917 resultados para continuous-time asymptotics
Resumo:
The jet characteristics and the fluid flow pattern in a continuous slab caster have been studied using a water model. The fluid jet is studied under free fall and submerged discharge conditions. In the latter case, the jet was followed by dye-injection technique and image analyser was used to find out the effect of nozzle parameters on jet-spread angle, jet-discharge angle and the volume entrainment by the jet. All free-fall jets with nozzle port angle zero and upward are found to be spinning. Some of the free-fall jets with downward nozzle-port angle are found to be spinning and rest are smooth. The spinning direction of the jets are found to change with time. The well depth, port diameter and the inner diameter of the nozzle have a clear effect on the free-fall jets with downward port angle. The jet-spread angle is found to be about 17-degrees for smooth jets. The spread angle for spinning jet increases as the nozzle-port angle is increased from downward 25 to upward 15-degrees. The jet-discharge angle is always downward even when the nozzle-discharge ports are angled upward. The extent of volume entrainment by the spinning jet is higher and it increases as the nozzle-port angle is increased from 25 downward to 15-degrees upward.
Resumo:
Polymer degradation in solution has several advantages over melt pyrolysis, The degradation of low-density polyethylene (LDPE) occurs at much lower temperatures in solution (280-360degreesC) than in conventional melt pyrolysis (400-450degreesC). The thermal degradation kinetics of LDPE in solution was investigated in this work. LDPE was dissolved in liquid paraffin and degraded for 3 h at various temperatures (280-360degreesC). Samples were taken at specific times and analyzed with high-pressure liquid chromatography/gel permeation chromatography for the molecular weight distribution (MWD), The time evolution of the MWD was modeled with continuous distribution kinetics. Data indicated that LDPE followed random-chain-scission degradation. The rapid initial drop in molecular weight, observed up to 45 min, was attributed to the presence of weak links in the polymer. The rate coefficients for the breakage of weak and strong links were determined, and the corresponding average activation energies were calculated to be 88 and 24 kJ/mol, respectively. (C) 2002 John Wiley Sons, Inc.
Resumo:
Ultrasonic degradation of poly(methyl methacrylate) (PMMA) was carried out in several solvents and some mixtures of solvents. The time evolution of molecular weight distribution (MWD), determined by gel permeation chromatography, is analysed by continuous distribution kinetics. The rate coefficients for polymer degradation are determined for each solvent. The variation of rate coefficients is correlated with the vapour pressure of the solvent, kinematic viscosity of the solution and solvent-polymer interaction parameters. The vapour pressure and the kinematic viscosity of the solution are found to be more critical than other parameters (such as the Huggins and Flory-Huggins constants) in determining the degradation rates. (C) 2001 Society of Chemical Industry.
Resumo:
We generalized the Enskog theory originally developed for the hard-sphere fluid to fluids with continuous potentials, such as the Lennard–Jones. We derived the expression for the k and ω dependent transport coefficient matrix which enables us to calculate the transport coefficients for arbitrary length and time scales. Our results reduce to the conventional Chapman–Enskog expression in the low density limit and to the conventional k dependent Enskog theory in the hard-sphere limit. As examples, the self-diffusion of a single atom, the vibrational energy relaxation, and the activated barrier crossing dynamics problem are discussed.
Resumo:
Model Reference Adaptive Control (MRAC) of a wide repertoire of stable Linear Time Invariant (LTI) systems is addressed here. Even an upper bound on the order of the finite-dimensional system is unavailable. Further, the unknown plant is permitted to have both minimum phase and nonminimum phase zeros. Model following with reference to a completely specified reference model excited by a class of piecewise continuous bounded signals is the goal. The problem is approached by taking recourse to the time moments representation of an LTI system. The treatment here is confined to Single-Input Single-Output (SISO) systems. The adaptive controller is built upon an on-line scheme for time moment estimation of a system given no more than its input and output. As a first step, a cascade compensator is devised. The primary contribution lies in developing a unified framework to eventually address with more finesse the problem of adaptive control of a large family of plants allowed to be minimum or nonminimum phase. Thus, the scheme presented in this paper is confined to lay the basis for more refined compensators-cascade, feedback and both-initially for SISO systems and progressively for Multi-Input Multi-Output (MIMO) systems. Simulations are presented.
Resumo:
We recast the reconstruction problem of diffuse optical tomography (DOT) in a pseudo-dynamical framework and develop a method to recover the optical parameters using particle filters, i.e., stochastic filters based on Monte Carlo simulations. In particular, we have implemented two such filters, viz., the bootstrap (BS) filter and the Gaussian-sum (GS) filter and employed them to recover optical absorption coefficient distribution from both numerically simulated and experimentally generated photon fluence data. Using either indicator functions or compactly supported continuous kernels to represent the unknown property distribution within the inhomogeneous inclusions, we have drastically reduced the number of parameters to be recovered and thus brought the overall computation time to within reasonable limits. Even though the GS filter outperformed the BS filter in terms of accuracy of reconstruction, both gave fairly accurate recovery of the height, radius, and location of the inclusions. Since the present filtering algorithms do not use derivatives, we could demonstrate accurate contrast recovery even in the middle of the object where the usual deterministic algorithms perform poorly owing to the poor sensitivity of measurement of the parameters. Consistent with the fact that the DOT recovery, being ill posed, admits multiple solutions, both the filters gave solutions that were verified to be admissible by the closeness of the data computed through them to the data used in the filtering step (either numerically simulated or experimentally generated). (C) 2011 Optical Society of America
Resumo:
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
Resumo:
Pulse retardation method of Breit and Tuve has been modified to record continuously the equivalent height as well as the intensity of reflections from the ionosphere. Synchronized pulses are transmitted, and the received ground pulse and the reflected pulses, after amplification and suitable distortion, are applied to the focusing cylinder of a cathode ray tube the horizontal deflecting plates of which are connected to a synchronized linear time base circuit. The pattern on the screen is composed of a bright straight line corresponding to the time base with dark gaps corresponding to the received pulses. The distance between the initial points of the gaps represents retardation while the widths of the gaps correspond to the intensity of the pulses. The pattern is photographed on a vertically moving film. One of the first few records taken at Bangalore on 4 megacycles is reproduced. It shows, among other things, that the less retarded component of magneto-ionic splitting from the F layer is present most of the time. Whenever the longer retardation component does occur, it has stronger intensity than the former. Towards the late evening hours, just before disappearing, when the F layer rises and exhibits magnetoionic splitting, the intensity of the less retarded component is extremely low compared with the other component.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov's transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
The key requirements for enabling real-time remote healthcare service on a mobile platform, in the present day heterogeneous wireless access network environment, are uninterrupted and continuous access to the online patient vital medical data, monitor the physical condition of the patient through video streaming, and so on. For an application, this continuity has to be sufficiently transparent both from a performance perspective as well as a Quality of Experience (QoE) perspective. While mobility protocols (MIPv6, HIP, SCTP, DSMIP, PMIP, and SIP) strive to provide both and do so, limited or non-availability (deployment) of these protocols on provider networks and server side infrastructure has impeded adoption of mobility on end user platforms. Add to this, the cumbersome OS configuration procedures required to enable mobility protocol support on end user devices and the user's enthusiasm to add this support is lost. Considering the lack of proper mobility implementations that meet the remote healthcare requirements above, we propose SeaMo+ that comprises a light-weight application layer framework, termed as the Virtual Real-time Multimedia Service (VRMS) for mobile devices to provide an uninterrupted real-time multimedia information access to the mobile user. VRMS is easy to configure, platform independent, and does not require additional network infrastructure unlike other existing schemes. We illustrate the working of SeaMo+ in two realistic remote patient monitoring application scenarios.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
This paper presents a comparative evaluation of the average and switching models of a dc-dc boost converter from the point of view of real-time simulation. Both the models are used to simulate the converter in real-time on a Field Programmable Gate Array (FPGA) platform. The converter is considered to function over a wide range of operating conditions, and could do transition between continuous conduction mode (CCM) and discontinuous conduction mode (DCM). While the average model is known to be computationally efficient from the perspective of off-line simulation, the same is shown here to consume more logical resources than the switching model for real-time simulation of the dc-dc converter. Further, evaluation of the boundary condition between CCM and DCM is found to be the main reason for the increased consumption of resources by the average model.
Resumo:
This paper proposes a variation of the pure proportional navigation guidance law, called augmented pure proportional navigation, to account for target maneuvers, in a realistic nonlinear engagement geometry, and presents its capturability analysis. These results are in contrast to most work in the literature on augmented proportional navigation laws that consider a linearized geometry imposed upon the true proportional navigation guidance law. Because pure proportional navigation guidance law is closer to a realistic implementation of proportional navigation than true proportional navigation law, and any engagement process is predominantly nonlinear, the results obtained in this paper are more realistic than any available in the literature. Sufficient conditions on speed ratio, navigation gain, and augmentation parameter for capturability, and boundedness of lateral acceleration, against targets executing piecewise continuous maneuvers with time, are obtained. Further, based on a priori knowledge of the maximum maneuver capability of the target, a significant simplification of the guidance law is proposed in this paper. The proposed guidance law is also shown to require a shorter time of interception than standard pure proportional navigation and augmented proportional navigation. To remove chattering in the interceptor maneuver at the end phase of the engagement, a hybrid guidance law using augmented pure proportional navigation and pure proportional navigation is also proposed. Finally, the guaranteed capture zones of standard and augmented pure proportional navigation guidance laws against maneuvering targets are analyzed and compared in the normalized relative velocity space. It is shown that the guaranteed capture zone expands significantly when augmented pure proportional navigation is used instead of pure proportional navigation. Simulation results are given to support the theoretical findings.
Resumo:
In this paper, the design of a new solar operated adsorption cooling system with two identical small and one large adsorber beds, which is capable of producing cold continuously, has been proposed. In this system, cold energy is stored in the form of refrigerant in a separate refrigerant storage tank at ambient temperature. Silica gel water is used as a working pair and system is driven by solar energy. The operating principle is described in details and its thermodynamic transient analysis is presented. Effect of COP and SCE for different adsorbent mass and adsorption/desorption time of smaller beds are discussed. Recommended mass and number of cycles of operation for smaller beds to attain continuous cooling with average COP and SCE of 0.63 and 337.5 kJ/kg, respectively are also discussed, at a generation, condenser and evaporator temperatures of 368 K, 303 K and 283 K, respectively. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Scalable stream processing and continuous dataflow systems are gaining traction with the rise of big data due to the need for processing high velocity data in near real time. Unlike batch processing systems such as MapReduce and workflows, static scheduling strategies fall short for continuous dataflows due to the variations in the input data rates and the need for sustained throughput. The elastic resource provisioning of cloud infrastructure is valuable to meet the changing resource needs of such continuous applications. However, multi-tenant cloud resources introduce yet another dimension of performance variability that impacts the application's throughput. In this paper we propose PLAStiCC, an adaptive scheduling algorithm that balances resource cost and application throughput using a prediction-based lookahead approach. It not only addresses variations in the input data rates but also the underlying cloud infrastructure. In addition, we also propose several simpler static scheduling heuristics that operate in the absence of accurate performance prediction model. These static and adaptive heuristics are evaluated through extensive simulations using performance traces obtained from Amazon AWS IaaS public cloud. Our results show an improvement of up to 20% in the overall profit as compared to the reactive adaptation algorithm.