985 resultados para coastal groundwater discharge
Resumo:
New laboratory scale experimental data are presented on the forcing of beach groundwater levels by wave run-up. The experimental setup simulates a coastal barrier dividing the ocean from a relatively constant back beach water level, conditions approximating a closed off lagoon system or beach aquifer. The data are critically compared to an advanced numerical model for simulating wave and beach groundwater interaction in the coastal zone, and provide the first experimental verification of such a model. Overall model-data comparisons are good, but some systematic discrepancies are apparent, and reasons for these are discussed.
Resumo:
Long term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on coastal biogeochemistry. The present study sought to increase understanding of the coastal marine system of South Florida under modern conditions and through the anthropogenic changes in the last century, on scales ranging from individual nutrient cycle processes to seasonal patterns in organic material (OM) under varying hydrodynamic regime, to century scale analysis of sedimentary records. In all applications, carbon and nitrogen stable isotopic compositions of OM were examined as natural recorders of change and nutrient cycling in the coastal system. ^ High spatial and temporal variability in stable isotopic compositions were observed on all time scales. During a transient phytoplankton bloom, δ 15N values suggested nitrogen fixation as a nutrient source supporting enhanced productivity. Seasonally, particulate organic material (POM) from ten sites along the Florida Reef Tract and in Florida Bay demonstrated variable fluctuations dependent on hydrodynamic setting. Three separate intra-annual patterns were observed, yet statistical differences were observed between groupings of Florida Bay and Atlantic Ocean sites. The POM δ 15N values ranged on a quarterly basis by 7‰, while δ 13C varied by 22‰. From a sediment history perspective, four cores collected from Florida Bay further demonstrated the spatial and temporal variability of the system in isotopic composition of bulk OM over time. Source inputs of OM varied with location, with terrestrial inputs dominating proximal to Everglades freshwater discharge, seagrasses dominating in open estuary cores, and a marine mixture of phytoplankton and seagrass in a core from the boundary zone between Florida Bay and the Gulf of Mexico. Significant shifts in OM geochemistry were observed coincident with anthropogenic events of the 20th century, including railroad and road construction in the Florida Keys and Everglades, and also the extensive drainage changes in Everglades hydrology. The sediment record also preserved evidence of the major hurricanes of the last century, with excursions in geochemical composition coincident with Category 4-5 storms. ^
Resumo:
Dissolved organic matter (DOM) is one of the largest carbon reservoirs on this planet and is present in aquatic environments as a highly complex mixture of organic compounds. The Florida coastal Everglades (FCE) is one of the largest wetlands in the world. DOM in this system is an important biogeochemical component as most of the nitrogen (N) and phosphorous (P) are in organic forms. Achieving a better understanding of DOM dynamics in large coastal wetlands is critical, and a particularly important issue in the context of Everglades restoration. In this work, the environmental dynamics of surface water DOM on spatial and temporal scales was investigated. In addition, photo- and bio-reactivity of this DOM was determined, surface-to-groundwater exchange of DOM was investigated, and the size distribution of freshwater DOM in Everglades was assessed. The data show that DOM dynamics in this ecosystem are controlled by both hydrological and ecological drivers and are clearly different on spatial scales and variable seasonally. The DOM reactivity data, modeled with a multi-pool first order degradation kinetics model, found that fluorescent DOM in FCE is generally photo-reactive and bio-refractory. Yet the sequential degradation proved a “priming effect” of sunlight on the bacterial uptake and reworking of this subtropical wetland DOM. Interestingly, specific PARAFAC components were found to have different photo- and bio-degradation rates, suggesting a highly heterogeneous nature of fluorophores associated with the DOM. Surface-to-groundwater exchange of DOM was observed in different regions of the system, and compositional differences were associated with source and photo-reactivity. Lastly, the high degree of heterogeneity of DOM associated fluorophores suggested based on the degradation studies was confirmed through the EEM-PARAFAC analysis of DOM along a molecular size continuum, suggesting that the fluorescence characteristics of DOM are highly controlled by different size fractions and as such can exhibit significant differences in reactivity.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This paper synthesizes research conducted during the first 5–6 years of the Florida Coastal Everglades Long-Term Ecological Research Program (FCE LTER). My objectives are to review our research to date, and to present a new central theme and conceptual approach for future research. Our research has focused on understanding how dissolved organic matter (DOM) from upstream oligotrophic marshes interacted with a marine source of the limiting nutrient, phosphorus (P), to control productivity in the oligohaline estuarine ecotone. We have been working along freshwater to marine transects in two drainage basins located in Everglades National Park (ENP). The Shark River Slough transect (SRS) has a direct connection to the Gulf of Mexico, providing this estuarine ecotone with a source of marine P. The oligohaline ecotone along our southern Everglades transect (TS/Ph), however, is separated from this marine P source by the Florida Bay estuary. We originally hypothesized an ecosystem productivity peak in the SRS ecotone, driven by the interaction of marine P and Everglades DOM, but no such productivity peak in the TS/Ph ecotone because of this lack of marine P. Our research to date has tended to show the opposite pattern, however, with many ecosystem components showing enhanced productivity in the TS/Ph ecotone, but not in the SRS ecotone. Water column P concentrations followed a similar pattern, with unexpectedly high P in the TS/Ph ecotone during the dry season. Our organic geochemical research has shown that Everglades DOM is more refractory than originally hypothesized. We have also begun to understand the importance of detrital organic matter production and transport to ecotone dynamics and as the base of aquatic food webs. Our future research will build on this substantial body of knowledge about these oligotrophic estuaries. We will direct our efforts more strongly on biophysical dynamics in the oligohaline ecotone regions. Specifically, we will be focusing on inputs to these regions from four primary water sources: freshwater Everglades runoff, net precipitation, marine inputs, and groundwater. We are hypothesizing that dry season groundwater inputs of P will be particularly important to TS/Ph ecotone dynamics because of longer water residence times in this area. Our organic geochemical, biogeochemical, and ecosystem energetics work will focus more strongly on the importance of detrital organics and will take advantage of a key Everglades Restoration project, scheduled for 2008 or 2009, that will increase freshwater inputs to our SRS transect only. Finally, we will also begin to investigate the human dimensions of restoration, and of a growing population in south Florida that will become increasingly dependent on the Everglades for critical ecosystem services (including fresh water) even as its growth presents challenges to Everglades sustainability.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Salinity, water temperature, and chlorophyll a (chl-a) biomass were used as performance measures in the period 1999–2001 to evaluate the effect of a hydrological rehabilitation project in the Ciénaga Grande de Santa Marta (CGSM)–Pajarales lagoon complex, Colombia where freshwater diversions were initiated in 1995 and completed in 1998. The objective of this study was to evaluate how diversions of freshwater into previously hypersaline (>80) environments changed the spatial and temporal distribution of environmental characteristics. Following the diversion, 19 surveys and transects using a flow-through system were surveyed in the CGSM–Pajarales complex to continuously measure selected water quality parameters. Geostatistical analysis indicates that hydrology and salinity regimes and water circulation patterns in the CGSM lagoon are largely controlled by freshwater discharge from the Fundacion, Aracataca, and Sevilla Rivers. Residence times in the CGSM lagoon were similar before (15.5 ± 3.8 days) and after (14.2 ± 2.0 days) the rehabilitation project and indicated that the system is flushed regularly. In contrast, chl-a biomass was highly variable in the CGSM–Pajarales lagoon complex and not related to discharge patterns. Mean annual chl-a biomass (44–250 μg L−1) following the diversion project was similar to values recorded since the 1980s and still remains among the highest reported in coastal systems around the world owing to its unique hydrology regulated by the Magdalena River and Sierra Nevada de Santa Marta watersheds and the high teleconnection to the El Niño Southern Oscillation (ENSO). Our results confirm that the reduction in salinity in the CGSM lagoon and Pajarales complex during 1999–2000 was largely driven by high precipitation (2500 mm) induced by the ENSO–La Niña rather than by the freshwater diversions.
Resumo:
Using high-resolution measures of aquatic ecosystem metabolism and water quality, we investigated the importance of hydrological inputs of phosphorus (P) on ecosystem dynamics in the oligotrophic, P-limited coastal Everglades. Due to low nutrient status and relatively large inputs of terrestrial organic matter, we hypothesized that the ponds in this region would be strongly net heterotrophic and that pond gross primary production (GPP) and respiration (R) would be the greatest during the “dry,” euhaline estuarine season that coincides with increased P availability. Results indicated that metabolism rates were consistently associated with elevated upstream total phosphorus and salinity concentrations. Pulses in aquatic metabolism rates were coupled to the timing of P supply from groundwater upwelling as well as a potential suite of hydrobiogeochemical interactions. We provide evidence that freshwater discharge has observable impacts on aquatic ecosystem function in the oligotrophic estuaries of the Florida Everglades by controlling the availability of P to the ecosystem. Future water management decisions in South Florida must include the impact of changes in water delivery on downstream estuaries.
Resumo:
Coastal ecosystems lie at the forefront of sea level rise. We posit that before the onset of actual inundation, sea level rise will influence the species composition of coastal hardwood hammocks and buttonwood (Conocarpus erectus L.) forests of the Everglades National Park based on tolerance to drought and salinity. Precipitation is the major water source in coastal hammocks and is stored in the soil vadose zone, but vadose water will diminish with the rising water table as a consequence of sea level rise, thereby subjecting plants to salt water stress. A model is used to demonstrate that the constraining effect of salinity on transpiration limits the distribution of freshwater-dependent communities. Field data collected in hardwood hammocks and coastal buttonwood forests over 11 years show that halophytes have replaced glycophytes. We establish that sea level rise threatens 21 rare coastal species in Everglades National Park and estimate the relative risk to each species using basic life history and population traits. We review salinity conditions in the estuarine region over 1999–2009 and associate wide variability in the extent of the annual seawater intrusion to variation in freshwater inflows and precipitation. We also examine species composition in coastal and inland hammocks in connection with distance from the coast, depth to water table, and groundwater salinity. Though this study focuses on coastal forests and rare species of South Florida, it has implications for coastal forests threatened by saltwater intrusion across the globe.