406 resultados para chloroplast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of studies have noted that nucleotide substitution rates at the chloroplast-encoded rbcL locus violate the molecular clock principle. Substitution rate variation at this plastid gene is particularly pronounced between palms and grasses; for example, a previous study estimated that substitution rates in rbcL sequences are approximately 5-fold faster in grasses than in palms. To determine whether a proportionate change in substitution rates also occurs in plant nuclear genes, we characterized nucleotide substitution rates in palm and grass sequences for the nuclear gene Adh. In this article, we report that palm sequences evolve at a rate of 2.61 x 10(-9) substitution per synonymous site per year, a rate which is slower than most plant nuclear genes. Grass Adh sequences evolve approximately 2.5-fold faster than palms at synonymous sites. Thus, synonymous rates in nuclear Adh genes show a marked decrease in palms relative to grasses, paralleling the pattern found at the plastid rbcL locus. This shared pattern indicates that synonymous rates are correlated between a nuclear and a plastid gene. Remarkably, nonsynonymous rates do not show this correlation. Nonsynonymous rates vary between two duplicated grass Adh loci, and nonsynonymous rates at the palm Adh locus are not markedly reduced relative to grasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorarachniophyte algae contain a complex, multi-membraned chloroplast derived from the endosymbiosis of a eukaryotic alga. The vestigial nucleus of the endosymbiont, called the nucleomorph, contains only three small linear chromosomes with a haploid genome size of 380 kb and is the smallest known eukaryotic genome. Nucleotide sequence data from a subtelomeric fragment of chromosome III were analyzed as a preliminary investigation of the coding capacity of this vestigial genome. Several housekeeping genes including U6 small nuclear RNA (snRNA), ribosomal proteins S4 and S13, a core protein of the spliceosome [small nuclear ribonucleoprotein (snRNP) E], and a cip-like protease (clpP) were identified. Expression of these genes was confirmed by combinations of Northern blot analysis, in situ hybridization, immunocytochemistry, and cDNA analysis. The protein-encoding genes are typically eukaryotic in overall structure and their messenger RNAs are polyadenylylated. A novel feature is the abundance of 18-, 19-, or 20-nucleotide introns; the smallest spliceosomal introns known. Two of the genes, U6 and S13, overlap while another two genes, snRNP E and clpP, are cotranscribed in a single mRNA. The overall gene organization is extraordinarily compact, making the nucleomorph a unique model for eukaryotic genomics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study addresses the assembly in the chloroplast thylakoid membranes of PsaD, a peripheral membrane protein of the photosystem I complex. Located on the stromal side of the thylakoids, PsaD was found to assemble in vitro into the membranes in its precursor (pre-PsaD) and also in its mature (PsaD) form. Newly assembled unprocessed pre-PsaD was resistant to NaBr and alkaline wash. Yet it was sensitive to proteolytic digestion. In contradistinction, when the assembled precursor was processed, the resulting mature PsaD was resistant to proteases to the same extent as endogenous [correction of endogeneous] PsaD. The accumulation of protease-resistant PsaD in the thylakoids correlated with the increase of mature-PsaD in the membranes. This protection of mature PsaD from proteolysis could not be observed when PsaD was in a soluble form-i.e. not assembled within the thylakoids. The data suggest that pre-PsaD assembles to the membranes and only in a second step processing takes place. The observation that the assembly of pre-PsaD is affected by salts to a much lesser extent than that of mature-PsaD supports a two-step assembly of pre-PsaD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multimeric protein complexes in chloroplasts and mitochondria are generally composed of products of both nuclear and organelle genes of the cell. A central problem of eukaryotic cell biology is to identify and understand the molecular mechanisms for integrating the production and accumulation of the products of the two separate genomes. Ribulose bisphosphate carboxylase (Rubisco) is localized in the chloroplasts of photosynthetic eukaryotic cells and is composed of small subunits (SS) and large subunits (LS) coded for by nuclear rbcS and chloroplast rbcL genes, respectively. Transgenic tobacco plants containing antisense rbcS DNA have reduced levels of rbcS mRNA, normal levels of rbcL mRNA, and coordinately reduced LS and SS proteins. Our previous experiments indicated that the rate of translation of rbcL mRNA might be reduced in some antisense plants; direct evidence is presented here. After a short-term pulse there is less labeled LS protein in the transgenic plants than in wild-type plants, indicating that LS accumulation is controlled in the mutants at the translational and/or posttranslational levels. Consistent with a primary restriction at translation, fewer rbcL mRNAs are associated with polysomes of normal size and more are free or are associated with only a few ribosomes in the antisense plants. Effects of the rbcS antisense mutation on mRNA and protein accumulation, as well as on the distribution of mRNAs on polysomes, appear to be minimal for other chloroplast and nuclear photosynthetic genes. Our results suggest that SS protein abundance specifically contributes to the regulation of LS protein accumulation at the level of rbcL translation initiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An entire gene encoding wheat (var. Hard Red Winter Tam 107) acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] has been cloned and sequenced. Comparison of the 12-kb genomic sequence with the 7.4-kb cDNA sequence reported previously revealed 29 introns. Within the coding region, the exon sequence is 98% identical to the known wheat cDNA sequence. A second ACCase gene was identified by sequencing fragments of genomic clones that include the first two exons and the first intron. Additional transcripts were detected by 5' and 3' RACE analysis (rapid amplification of cDNA ends). One set of transcripts had a 5' end sequence identical to the cDNA found previously and another set was identical to the gene reported here. The 3' RACE clones fall into four distinguishable sequence sets, bringing the number of ACCase sequences to six. None of these cDNA or genomic clones encodes a chloroplast targeting signal. Identification of six different sequences suggests that either the cytosolic ACCase genes are duplicated in the three chromosome sets in hexaploid wheat or that each of the six alleles of the cytosolic ACCase gene has a readily distinguishable DNA sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pumpkin leaves grown under high light (500-700 micromol of photons m-2.s-1) were illuminated under photon flux densities ranging from 6.5 to 1500 micromol.m-2.s-1 in the presence of lincomycin, an inhibitor of chloroplast protein synthesis. The illumination at all light intensities caused photoinhibition, measured as a decrease in the ratio of variable to maximum fluorescence. Loss of photosystem II (PSII) electron transfer activity correlated with the decrease in the fluorescence ratio. The rate constant of photoinhibition, determined from first-order fits, was directly proportional to photon flux density at all light intensities studied. The fluorescence ratio did not decrease if the leaves were illuminated in low light in the absence of lincomycin or incubated in darkness in the presence of lincomycin. The constancy of the quantum yield of photoinhibition under different photon flux densities strongly suggests that photoinhibition in vivo occurs by one dominant mechanism under all light intensities. This mechanism probably is not the acceptor side mechanism characterized in the anaerobic case in vitro. Furthermore, there was an excellent correlation between the loss of PSII activity and the loss of the D1 protein from thylakoid membranes under low light. At low light, photoinhibition occurs so slowly that inactive PSII centers with the D1 protein waiting to be degraded do not accumulate. The kinetic agreement between D1 protein degradation and the inactivation of PSII indicates that the turnover of the D1 protein depends on photoinhibition under both low and high light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response pattern paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress-induced mutations may play an important role in the evolution of plants. Plants do not sequester a germ line, and thus any stress-induced mutations could be passed on to future generations. We report a study of the effects of heat shock on genomic components of Brassica nigra Brassicaceae. Plants were submitted to heat stress, and the copy number of two nuclear-encoded single-copy genes, rRNA-encoding DNA (rDNA) and a chloroplast DNA gene, was determined and compared to a nonstressed control group. We determined whether genomic changes were inherited by examining copy number in the selfed progeny of control and heat-treated individuals. No effects of heat shock on copy number of the single-copy nuclear genes or on chloroplast DNA are found. However, heat shock did cause a statistically significant reduction in rDNA copies inherited by the F1 generation. In addition, we propose a DNA damage-reppair hypothesis to explain the reduction in rDNA caused by heat shock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaves of the C4 plant maize have two major types of photosynthetic cells: a ring of five large bundle sheath cells (BSC) surrounds each vascular bundle and smaller mesophyll cells (MC) lie between the cylinders of bundle sheath cells. The enzyme ribulose bisphosphate carboxylase/oxygenase is encoded by nuclear rbcS and chloroplast rbcL genes. It is not present in MC but is abundant in adjacent BSC of green leaves. As reported previously, the separate regions of rbcS-m3, which are required for stimulating transcription of the gene in BSC and for suppressing expression of reporter genes in MC, were identified by an in situ expression assay; expression was not suppressed in MC until after leaves of dark-grown seedlings had been illuminated for 24 h. Now we have found that transient expression of rbcS-m3 reporter genes is stimulated in BSC via a red/far-red reversible phytochrome photoperception and signal transduction system but that blue light is required for suppressing rbcS-m3 reporter gene expression in MC. Blue light is also required for the suppression system to develop in MC. Thus, the maize gene rbcS-m3 contains certain sequences that are responsive to a phytochrome photoperception and signal transduction system and other regions that respond to a UVA/blue light photoperception and signal transduction system. Various models of "coaction" of plant photoreceptors have been advanced; these observations show the basis for one type of coaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The O2 and CO2 compensation points (O2 and CO2) of plants in a closed system depend on the ratio of CO2 and O2 concentrations in air and in the chloroplast and the specificities of ribulose bisphosphate carboxylase/oxygenase (Rubisco). The photosynthetic O2 is defined as the atmospheric O2 level, with a given CO2 level and temperature, at which net O2 exchange is zero. In experiments with C3 plants, the O2 with 220 ppm CO2 is 23% O2; O2 increases to 27% with 350 ppm CO2 and to 35% O2 with 700 ppm CO2. At O2 levels below the O2, CO2 uptake and reduction are accompanied by net O2 evolution. At O2 levels above the O2, net O2 uptake occurs with a reduced rate of CO2 fixation, more carbohydrates are oxidized by photorespiration to products of the C2 oxidative photosynthetic carbon cycle, and plants senesce prematurely. The CO2 increases from 50 ppm CO2 with 21% O2 to 220 ppm with 100% O2. At a low CO2/high O2 ratio that inhibits the carboxylase activity of Rubisco, much malate accumulates, which suggests that the oxygen-insensitive phosphoenolpyruvate carboxylase becomes a significant component of the lower CO2 fixation rate. Because of low global levels of CO2 and a Rubisco specificity that favors the carboxylase activity, relatively rapid changes in the atmospheric CO2 level should control the permissive O2 that could lead to slow changes in the immense O2 pool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eukaryotic green alga Dunaliella tertiolecta acclimates to decreased growth irradiance by increasing cellular levels of light-harvesting chlorophyll protein complex apoproteins associated with photosystem II (LHCIIs), whereas increased growth irradiance elicits the opposite response. Nuclear run-on transcription assays and measurements of cab mRNA stability established that light intensity-dependent changes in LHCII are controlled at the level of transcription. cab gene transcription in high-intensity light was partially enhanced by reducing plastoquinone with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), whereas it was repressed in low-intensity light by partially inhibiting the oxidation of plastoquinol with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Uncouplers of photosynthetic electron transport and inhibition of water splitting had no effect on LHCII levels. These results strongly implicate the redox state of the plastoquinone pool in the chloroplast as a photon-sensing system that is coupled to the light-intensity regulation of nuclear-encoded cab gene transcription. The accumulation of cellular chlorophyll at low-intensity light can be blocked with cytoplasmically directed phosphatase inhibitors, such as okadaic acid, microcystin L-R, and tautomycin. Gel mobility-shift assays revealed that cells grown in high-intensity light contained proteins that bind to the promoter region of a cab gene carrying sequences homologous to higher plant light-responsive elements. On the basis of these experimental results, we propose a model for a light intensity signaling system where cab gene expression is reversibly repressed by a phosphorylated factor coupled to the redox status of plastoquinone through a chloroplast protein kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extensive sequence comparison of the chloroplast ndhF gene from all major clades of the largest flowering plant family (Asteraceae) shows that this gene provides approximately 3 times more phylogenetic information than rbcL. This is because it is substantially longer and evolves twice as fast. The 5' region (1380 bp) of ndhF is very different from the 3' region (855 bp) and is similar to rbcL in both the rate and the pattern of sequence change. The 3' region is more A+T-rich, has higher levels of nonsynonymous base substitution, and shows greater transversion bias at all codon positions. These differences probably reflect different functional constraints on the 5' and 3' regions of ndhF. The two patterns of base substitutions of ndhF are particularly advantageous for phylogenetic reconstruction because the conserved and variable segments can be used for older and recent groups, respectively. Phylogenetic analyses of 94 ndhF sequences provided much better resolution of relationships than previous molecular and morphological phylogenies of the Asteraceae. The ndhF tree identified five major clades: (i) the Calyceraceae is the sister family of Asteraceae; (ii) the Barnadesioideae is monophyletic and is the sister group to the rest of the family; (iii) the Cichorioideae and its two basal tribes Mutisieae and Cardueae are paraphyletic; (iv) four tribes of Cichorioideae (Lactuceae, Arctoteae, Liabeae, and Vernonieae) form a monophyletic group, and these are the sister clade of the Asteroideae; and (v) the Asteroideae is monophyletic and includes three major clades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genes for glycolytic and Calvin-cycle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of higher eukaryotes derive from ancient gene duplications which occurred in eubacterial genomes; both were transferred to the nucleus during the course of endosymbiosis. We have cloned cDNAs encoding chloroplast and cytosolic GAPDH from the early-branching photosynthetic protist Euglena gracilis and have determined the structure of its nuclear gene for cytosolic GAPDH. The gene contains four introns which possess unusual secondary structures, do not obey the GT-AG rule, and are flanked by 2- to 3-bp direct repeats. A gene phylogeny for these sequences in the context of eubacterial homologues indicates that euglenozoa, like higher eukaryotes, have obtained their GAPDH genes from eubacteria via endosymbiotic (organelle-to-nucleus) gene transfer. The data further suggest that the early-branching protists Giardia lamblia and Entamoeba histolytica--which lack mitochondria--and portions of the trypanosome lineage have acquired GAPDH genes from eubacterial donors which did not ultimately give rise to contemporary membrane-bound organelles. Evidence that "cryptic" (possibly ephemeral) endosymbioses during evolution may have entailed successful gene transfer is preserved in protist nuclear gene sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the isolation and characterization of cDNAs encoding the precursor polypeptide of the 6.1-kDa polypeptide associated with the reaction center core of the photosystem II complex from spinach. PsbW, the gene encoding this polypeptide, is present in a single copy per haploid genome. The mature polypeptide with 54 amino acid residues is characterized by a hydrophobic transmembrane segment, and, although an intrinsic membrane protein, it carries a bipartite transit peptide of 83 amino acid residues which directs the N terminus of the mature protein into the chloroplast lumen. Thylakoid integration of this polypeptide does not require a delta pH across the membrane, nor is it azide-sensitive, suggesting that the polypeptide chain inserts spontaneously in an as yet unknown way. The PsbW mRNA levels are light regulated. Similar to cytochrome b559 and PsbS, but different from the chlorophyll-complexing polypeptides D1, D2, CP43, and CP47 of photosystem II, PsbW is present in etiolated spinach seedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flowering plants require light for chlorophyll synthesis. Early studies indicated that the dependence on light for greening stemmed in part from the light-dependent reduction of the chlorophyll intermediate protochlorophyllide to the product chlorophyllide. Light-dependent reduction of protochlorophyllide by flowering plants is contrasted by the ability of nonflowering plants, algae, and photosynthetic bacteria to reduce protochlorophyllide and, hence, synthesize (bacterio) chlorophyll in the dark. In this report, we functionally complemented a light-independent protochlorophyllide reductase mutant of the eubacterium Rhodobacter capsulatus with an expression library composed of genomic DNA from the cyanobacterium Synechocystis sp. PCC 6803. The complemented R. capsulatus strain is capable of synthesizing bacteriochlorophyll in the light, thereby indicating that a chlorophyll biosynthesis enzyme can function in the bacteriochlorophyll biosynthetic pathway. However, under dark growth conditions the complemented R. capsulatus strain fails to synthesize bacteriochlorophyll and instead accumulates protochlorophyllide. Sequence analysis demonstrates that the complementing Synechocystis genomic DNA fragment exhibits a high degree of sequence identity (53-56%) with light-dependent protochlorophyllide reductase enzymes found in plants. The observation that a plant-type, light-dependent protochlorophyllide reductase enzyme exists in a cyanobacterium indicates that light-dependent protochlorophyllide reductase evolved before the advent of eukaryotic photosynthesis. As such, this enzyme did not arise to fulfill a function necessitated either by the endosymbiotic evolution of the chloroplast or by multicellularity; rather, it evolved to fulfill a fundamentally cell-autonomous role.