966 resultados para chemical residues in universities
Resumo:
Content, distribution patterns, and speciation of Cl in phosphorites and bone phosphate from the ocean floor, as well as in a set of samples from the land are studied. Total Cl content varies from 0.05 to 4.25% in phosphorites and from 2.48 to 2.75% in recent phosphate-bearing sediments. Recent phosphorites are enriched in Cl relative to ancient ones. Bound Cl content (not extractable by washing), which increases with lithification, varies from 0.17 to 0.60% in ocean and land phosphorites and from 0.02% to 1.30% in bone phosphate. Na content in most samples is higher relative to Na of NaCl due to its incorporation into the crystal lattice of apatite. However, the opposite relationship is observed in some samples indicating partial Cl incorporation into the anion complex of phosphate. Behavior of Cl in phosphorites from the present-day ocean floor is controlled by early diagenetic processes, whereas the role of weathering, catagenesis, and hydrogeological factors may be crucial for phosphorites on continents.
Resumo:
As is less toxic than Hg, Cd, Pb, Se, Zn, and Cu. The As clarke for clays and shales is 10 ppm. Our samples of bottom sediments from Kurshskii Bay were determined to contain from 15 to 26 ppm As and up to 34 ppm As in the vicinity of the Neman River mouth. Elevated As concentrations (50-114 ppm) were detected in four columns of subsurface bottom sediments (at depths of 10-65 cm) from the Vistula Lagoon. Elevated As concentrations (50-180 ppm) were also found in a few surface samples of sand from the Gdansk Deep near oil platform D-6. These sediments are either partly contaminated with anthropogenic As or contain Fe sulfides and glauconite, which can concentrate As and contain its elevated concentrations. The As concentration in columns of bottom sediments from the Gulf of Finland were at the natural background level (throughout the columns) typical of the area (9-34 ppm). We repeatedly detected very high As concentrations (up to 227 ppm As) in politic ooze from Bornholm Deep, in the vicinity of the sunken vessel with chemical weapons. The sources of elevated As concentrations in the Baltic Sea are the following: (1) chemical weapon (CW) material buried in the floor of the Baltic Sea; (2) As-bearing pesticides, agricultural mineral fertilizers, and burned coal and other fuels; (3) kerogen-bearing Ordovician rocks exposed on the bottom; and (4) As-rich Fe sulfides brought to the area together with construction sand and gravel. This mixture was used in paper production and for the construction of hydraulic engineering facilities in the Vistula Lagoon in the early 20th century and later caused the so-called lagoon disease.