947 resultados para chemical oxygen demand
Resumo:
Sediment porewater oxygen profiles were measured with micro and needle electrodes in sediment cores of 27 stations in the Skagerrak (northeastern North Sea). Oxygen penetration depth ranged from 3 to 20 mm depth. Fluxes estimated from the oxygen gradients varied from 3 to 18 mmol m**-2 d**-1. Oxygen penetration and flux depend on water depth, but possibly more on the hydrological conditions, related to the import of fresh organic matter by primary production in the water column. Oxygen fluxes were not related to the total organic carbon (TOC) content of the sediments. Stations in the eastern part of the Skagerrak showed high burial rates of TOC. At 6 stations porewater chemistry of Fe, Mn and NO3- was strongly associated with the oxygen distribution. The average relative contribution of terminal electron acceptors to carbon mineralisation was estimated at 85% for O2, 0.5% for Mn, 4.5% for [NO3]3-, 1% for Fe and 9% for [SO4]2-. At one station the occurrence of exceptionally high solid manganese oxyhydroxides was probably related to an active internal manganese cycle.
Resumo:
The aim of this study is to quantity the effect of filter bed depth and solid waste inputs on the performance of small-scale vermicompost filter beds that treat the soluble contaminants within domestic wastewater. The study also aims to identify environmental conditions within the filters by quantifying the oxygen content and pH of wastewater held within it. Vermicompost is being utilised within commercially available on-site domestic waste treatment systems however, there are few reported studies that have examined this medium for the purpose of wastewater treatment. Three replicate small-scale reactors were designed to enable wastewater sampling at five reactor depths in 10-cm intervals. The surface of each reactor received household solid organic waste and 1301 m(-2) per day of raw domestic wastewater. The solid waste at the filter bed surface leached oxygen demand into the wastewater flowing through it. The oxygen demand was subsequently removed in lower reactor sections. Both nitrification and denitrification occurred in the bed. The extent of denitrification was a function of BOD leached from the solid waste. The environmental conditions measured within the bed were found to be suitable for earthworms living within them. The study identified factors that will affect the performance and application of the vermicompost filtration technology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Overall, our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. Also, this research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.
Resumo:
Rivers represent a transition zone between terrestric and aquatic environments, and between methane rich and methane poor environments. The Elbe River is one of the important rivers draining into the North Sea and with the Elbe potentially high amounts of methane could be imported into the water column of the North Sea. Twelve cruises from October 2010 until June 2013 were conducted from Hamburg towards the Elbe mouth at Cuxhaven. The dynamic of methane concentration in the water column and its consumption via methane oxidation was measured. In addition, physico-chemical parameters were used to estimate their influence on the methanotrophic activity. We observed high methane concentrations at the stations in the area of Hamburg harbor ("inner estuary") and about 10 times lower concentrations in the outer estuary (median of 416 versus 40 nmol/L). The methane oxidation (MOX) rate mirrowed the methane distribution with high values in the inner estuary and low values in the outer estuary (median of 161 versus 10 nmol/L/d respectively) Methane concentrations were significantly influenced by the river hydrology (falling water level) and the trophic state of the water (biological oxygen demand). In contrast to other studies no clear relation to the amount of suspendended particulate matter (SPM) was found. Methane oxidation rates were significantly influenced by methane concentration and to a weaker extent by temperature. Methane oxidation accounted for 41 ± 12% of the total loss of methane in summer/fall, but only for 5 ± 3% of the total loss in winter/spring. We applied a modified box model taking into account the residence times of a water parcel depending on discharge and tidal impact. We observed almost stable methane concentrations in the outer estuary, despite a strong loss of methane through diffusion and oxidation. Thus we postulate that in the outer Elbe estuary a strong additional input of methane is required, which could be provided by the extensive salt marshes near the river mouth.
Resumo:
The current study examined spatial-temporal modifications and water quality through chemical and biotic indicators during both dry (January, February and November 2006) and wet seasons (March to June 2006). This study was carried out in Armando Ribeiro Gonçalves Reservoir, RN, Canal do Pataxó and after the water station treatment (WST). The physical-chemical parameters were measured in situ and inorganic nutrients, chlorophyll a and Free Oxygen Demand (FOD) were analyzed in laboratory conditions. Quali quantitative analyses of phytoplankton were carried out utilizing Sedgwick-Rafter camera. Results indicate that DQO concentrations were low. FOD concentrations in the reservoir were comparatively higher in the dry season (5.21 mgL-1; 5.64 mgL-1 e 6.05 mgL-1) in relation to the wet season (4.52 mgL-1; 4.12 mgL-1 e 4.92 mgL-1), in surface, intermediate and bottom waters, respectively. FOD values were inferior to 1.0mgL-1in both Canal do Pataxó and after WST, which is considered adequate for public use reservoirs. Although FOD concentrations were low, Armando Ribeiro Gonçalves Reservoir, Canal do Pataxó and WST were classified as euthophizied, mesotrophic ad oligotrophic, respectively, considering the Index of Trophic State Criteria. Chlorophyll a concentrations in the study reservoir were higher in the surface (199.2 µgL-1) during the wet season, whereas in Canal do Pataxó concentrations decreased from 1.56 µgL-1 to 0.028 µgL-1, and after WST values were low (0.059 µgL-1). Dominance of cianobacterias, such as Planktotrhix agardhii (dry season) and Microcystis sp (wet season) was registered in all three areas. In the reservoir and Canal do Pataxó, density of cianobacterias, such as P. agardhii and Microcistys sp., was superior to the values allowed by the Health ministry (HM). However, after WST, density values of cianobacteria were inferior to values established by the HM
Resumo:
The effluents released by the textile industry have high concentrations of alkali, carbohydrates, proteins, in addition to colors containing heavy metals. Therefore, a filter was prepared aiming primarily to the removal of color. In order to prepare this filter, rice hulls and diatomite were used, which have in their structure, basically amorphous hydrated silica. The silica exists in three crystalline forms: quartz, tridymite and cristobalite. In accordance with the above considerations, this study was divided into two stages; the first corresponds to the preparation of the filter and the second to carry out the tests in the effluent/filter in order to verify the efficiency of the color removal. First, the raw material was subjected to a chemical analysis and XRD, and then the diatomite was mixed, via humid, with a planetarium windmill with 20 %, 40 %, 60 % and 80 % of rice husk ash. To the mixture, 5 % carboxymethylcellulose (CMC) was added as a binder at room temperature. The samples were uniaxially compacted into metallic matrix of 0.3 x 0.1 cm² of area at a pressure of 167 MPa by means of hydraulic press and then sintered at temperatures of 1,000 °C, 1,200 °C and 1,400 °C for 1 h and submitted to granulometry test using laser, linear retraction, water absorption, apparent porosity and resistance to bending, DTA, TMA and XRD. To examine the pore structure of the samples scanning electron microscope (SEM) was used. Also tests were carried out in a mercury porosimeter to verify the average size of the pores and real density of the samples. In the second stage, samples of the effluent were collected from a local industry, whose name will be preserved, located in Igapó, in the State of Rio Grande do Norte - RN. The effluent was first pretreated before filtration and then subjected to a treatment of flotation. The effluent was then characterized before and after filtration, with parameters of color, turbidity, suspended solids, pH, chemical and biochemical oxygen demand (COD and BOD). Thus, through the XRD analysis the formation of cristobalite α in all samples was observed. The best average size of pore was found to be 1.75 μm with 61.04 % apparent porosity, thus obtaining an average 97.9 % color removal and 99.8 % removal of suspended solid
Resumo:
The current study examined spatial-temporal modifications and water quality through chemical and biotic indicators during both dry (January, February and November 2006) and wet seasons (March to June 2006). This study was carried out in Armando Ribeiro Gonçalves Reservoir, RN, Canal do Pataxó and after the water station treatment (WST). The physical-chemical parameters were measured in situ and inorganic nutrients, chlorophyll a and Free Oxygen Demand (FOD) were analyzed in laboratory conditions. Quali quantitative analyses of phytoplankton were carried out utilizing Sedgwick-Rafter camera. Results indicate that DQO concentrations were low. FOD concentrations in the reservoir were comparatively higher in the dry season (5.21 mgL-1; 5.64 mgL-1 e 6.05 mgL-1) in relation to the wet season (4.52 mgL-1; 4.12 mgL-1 e 4.92 mgL-1), in surface, intermediate and bottom waters, respectively. FOD values were inferior to 1.0mgL-1in both Canal do Pataxó and after WST, which is considered adequate for public use reservoirs. Although FOD concentrations were low, Armando Ribeiro Gonçalves Reservoir, Canal do Pataxó and WST were classified as euthophizied, mesotrophic ad oligotrophic, respectively, considering the Index of Trophic State Criteria. Chlorophyll a concentrations in the study reservoir were higher in the surface (199.2 µgL-1) during the wet season, whereas in Canal do Pataxó concentrations decreased from 1.56 µgL-1 to 0.028 µgL-1, and after WST values were low (0.059 µgL-1). Dominance of cianobacterias, such as Planktotrhix agardhii (dry season) and Microcystis sp (wet season) was registered in all three areas. In the reservoir and Canal do Pataxó, density of cianobacterias, such as P. agardhii and Microcistys sp., was superior to the values allowed by the Health ministry (HM). However, after WST, density values of cianobacteria were inferior to values established by the HM
Resumo:
The use of human mesenchymal stem cells (hMSCs) in regenerative medicine is a potential major advance for the treatment of many medical conditions, especially with the use of allogeneic therapies where the cells from a single donor can be used to treat ailments in many patients. Such cells must be grown attached to surfaces and for large scale production, it is shown that stirred bioreactors containing ~200 μm particles (microcarriers) can provide such a surface. It is also shown that the just suspended condition, agitator speed NJS, provides a satisfactory condition for cell growth by minimizing the specific energy dissipation rate, εT, in the bioreactor whilst still meeting the oxygen demand of the cells. For the cells to be used for therapeutic purposes, they must be detached from the microcarriers before being cryopreserved. A strategy based on a short period (~7 min) of very high εT, based on theories of secondary nucleation, is effective at removing >99% cells. Once removed, the cells are smaller than the Kolmogorov scale of turbulence and hence not damaged. This approach is shown to be successful for culture and detachment in 4 types of stirred bioreactors from 15 mL to 5 L.