970 resultados para catecholamine depletion
Resumo:
A two-dimensional numerical simulation model of interface states in scanning capacitance microscopy (SCM) measurements of p-n junctions is presented-In the model, amphoteric interface states with two transition energies in the Si band gap are represented as fixed charges to account for their behavior in SCM measurements. The interface states are shown to cause a stretch-out-and a parallel shift of the capacitance-voltage characteristics in the depletion. and neutral regions of p-n junctions, respectively. This explains the discrepancy between - the SCM measurement and simulation near p-n junctions, and thus modeling interface states is crucial for SCM dopant profiling of p-n junctions. (C) 2002 American Institute of Physics.
Resumo:
Background: It has previously been suggested that CD4(+) T cells play a pivotal role in regulating the immune response to periodontal pathogens. The aim of the present study therefore was to determine delayed type hypersensitivity (DTH), spleen cell proliferation, serum and splenic anti-Porphyromonas gingivalis antibody levels, and lesion sizes following challenge with viable P. gingiualis in CD4-depleted BALB/c mice immunized with P. gingiualis outer membrane proteins (OMP). Methods: Four groups of BALB/c mice were used. Groups 1 and 2 were injected intraperitoneally (ip) with saline for 3 consecutive days and then weekly throughout the experiment. Groups 3 and 4 were injected ip with rat immunoglobulin and a monoclonal rat anti-mouse CD4 antibody, respectively. Two days later, group 1 mice were injected ip with saline only, while all the other groups were immunized ip with P. gingiualis OMP weekly for 3 weeks. One week later following the last immunization of OMP, 3 separate experiments were conducted to determine: 1) the DTH response to P. gingiualis OMP by measuring footpad swelling; 2) the levels of antibodies to P. gingiualis in serum samples and spleen cell cultures using an enzyme-linked immunosorbent assay, as well as spleen cell proliferation after stimulation with OMP; and 3) the lesion sizes after a subcutaneous challenge with viable P. gingiualis cells. Results: In CD4(+) T-cell-depleted mice (group 4), the DTH response and antigen-stimulated cell proliferation were significantly suppressed when compared to groups 2 and 3. Similarly, the levels of serum and splenic IgM, IgG, and all IgG subclass antibodies to P. gingiualis OMP were depressed. Delayed healing of P. gingivalis-induced lesions was also observed in the CD4(+) T-cell-depleted group. Conclusions: This study has shown that depletion of CD4(+) T cells prior to immunization with P. gingiualis OMP led to the suppression of both the humoral and cell-mediated immune response to this microorganism and that this was associated with delayed healing. These results suggest that the induction of the immune response to P. gingiualis is a CD4(+) T-cell-dependent mechanism and that CD4(+) T cells are important in the healing process.
Resumo:
Friedreich ataxia (FA) Is caused by decreased frataxin expression that results in mitochondrial iron (Fe) overload. However, the role of frataxin in mammalian Fe metabolism remains unclear. In this investigation we examined the function of frataxin in Fe metabolism by implementing a well-characterized model of erythroid differentiation, namely, Friend cells induced using dimethyl sulfoxide (DMSO). We have characterized the changes in frataxin expression compared to molecules that play key roles in Fe metabolism (the transferrin receptor [TfR] and the Fe transporter Nramp2) and hemoglobinization (beta-globin). DMSO induction of hemoglobinization results in a marked decrease in frataxin gene (Frda) expression and protein levels. To a lesser extent, Nramp2 messenger RNA (mRNA) levels were also decreased on erythroid differentiation, whereas TfR and beta-globin mRNA levels increased. Intracellular Fe depletion using desferrioxamine or pyridoxal isonicotinoyl hydrazone, which chelate cytoplasmic or cytoplasmic and mitochondrial Fe pools, respectively, have no effect on frataxin expression. Furthermore, cytoplasmic or mitochondrial Fe loading of induced Friend cells with ferric ammonium citrate, or the heme synthesis inhibitor, succinylacetone, respectively, also had no effect on frataxin expression. Although frataxin has been suggested by others to be a mitochondrial ferritin, the lack of effect of intracellular Fe levels on frataxin expression is not consistent with an Fe storage role. Significantly, protoporphyrin IX down-regulates frataxin protein levels, suggesting a regulatory role of frataxin in Fe or heme metabolism. Because decreased frataxin expression leads to mitochondrial Fe loading in FA, our data suggest that reduced frataxin expression during erythroid differentiation results in mitochondrial Fe sequestration for heme biosynthesis. (C) 2002 by The American Society of Hematology.
Resumo:
This study presents novel evidence that N-15 natural abundance can be used as a robust indicator to detect pollutant nitrogen in natural plant communities. Vegetation from the heavily polluted industrial area of Cubatao in Sao Paulo State, SE Brazil, was strongly N-15 depleted compared to plants at remote sites. Historic herbarium samples from Cubatao were significantly less N-15 depleted than extant plants, indicating that N-15 depletion of vegetation is associated with present-day nitrogen pollution in Cubatao. The heavy load of nitrogenous atmospheric pollutants in Cubatao provides a nitrogen source for plants, and strongly N-15 depleted air NH3 is likely to contribute to plant and soil N-15 depletion. Epiphytic plants from Cubatao were extremely N-15 depleted (average -10.9parts per thousand) contrasting with epiphytes at remote sites (averages -1.0parts per thousand and -3.0parts per thousand). Nitrogen isotope composition of vegetation provides a tool to determine input of pollutant nitrogen into plant communities. The strong isotopic change of epiphytes suggests that epiphytes are particularly sensitive biomonitors for atmospheric pollutant nitrogen.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2 mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2 mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24 h, The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity, Conversely, pro-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Studies on purified blood dendritic cells (DCs) are hampered by poor viability in tissue culture. We, therefore, attempted to study some of the interactions/relationships between DCs and other blood cells by culturing unseparated peripheral blood mononuclear cell (PBMC) preparations in vitro. Flow cytometric techniques were used to undertake a phenotypic and functional analysis of DCs within the cultured PBMC population. We discovered that both the CD11c(+) and CD11c(-) CD123(hi) DC subsets maintained their viability throughout the 3-day culture period, without the addition of exogenous cytokines. This viability was accompanied by progressive up-regulation of the surface costimulatory (CD40, CD80, CD86) and activation (CMRF-44, CMRF-56, CD83) molecules. The survival and apparent production of DCs in PBMC culture (without exogenous cytokines) and that of sorted DCs (with cytokines) were evaluated and compared by using TruCOUNT analysis. Absolute DC counts increased (for CD123hi and CD11c+ subsets) after overnight culture of PBMCs. Single-cell lineage depletion experiments demonstrated the rapid and spontaneous emergence of new in vitro generated DCs from CD14(+)/CD16(+) PBMC radioresistant precursors, additional to the preexisting ex vivo DC population. Unlike monocyte-derived DCs, blood DCs increased dextran uptake with culture and activation. Finally, DCs obtained after culture of PBMCs for 3 days were as effective as freshly isolated DCs in stimulating an allogeneic mixed leukocyte reaction. (C) 2002 by The American Society of Hematology.
Resumo:
The BCR-ABL fusion proteins, b2a2 and b3a2, are potential targets for a beneficial graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation for chronic myeloid leukemia (CML). This study demonstrates that CD4(+) T cells specific to the b2a2 peptide can be generated from a normal allogeneic stem cell transplant donor after stimulation with monocyte-derived dendritic cells (Mo-DC) using culture conditions applicable to clinical use. Stimulation of donor T-cell enriched mononuclear cells (MNC) with b2a2-pulsed Mo-DC produced approximately 3 x 10(9) b2a2-specific CD4(+) T cells. The CD4(+) T cells were HLA-DR7 restricted. These results confirm that the generation of donor derived b2a2-specific T cells for clinical use is feasible and warrants clinical testing after stem cell transplantation.
Resumo:
The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Objective. Evidence from animal studies, case reports, and phase I studies suggests that hemopoietic stem cell transplantation (HSCT) can be effective in the treatment of rheumatoid arthritis (RA). It is unclear, however, if depletion of T cells in the stem cell product infused after high-dose chemotherapy is beneficial in prolonging responses by reducing the number of infused autoreactive T cells. This pilot multicenter, randomized trial was undertaken to obtain feasibility data on whether CD34 selection (as a form of T cell depletion) of an autologous stem cell graft is of benefit in the HSCT procedure in patients with severe, refractory RA. Methods. Thirty-three patients with severe RA who had been treated unsuccessfully with methotrexate and at least 1 other disease-modifying agent were enrolled in the trial. The patients received high-dose immunosuppressive treatment with 200 mg/kg cyclophosphamide followed by an infusion of autologous stem cells that were CD34 selected or unmanipulated. Safety, efficacy (based on American College of Rheumatology [ACR] response criteria), and time to recurrence of disease were assessed on a monthly basis for up to 12 months. Results. All patients were living at the end of the study, with no major unexpected toxicities. Overall, on an intent-to-treat basis, ACR 20% response (ACR20) was achieved in 70% of the patients. An ACR70 response was attained in 27.7% of the 18 patients who had received CD34-selected cells and 53.3% of the 15 who had received unmanipulated cells (P = 0.20). The median time to disease recurrence was 147 days in the CD34-selected cell group and 201 days in the unmanipulated cell group (P = 0.28). There was no relationship between CD4 lymphopenia and response, but 72% of rheumatoid factor (RF)-positive patients had an increase in RF titer prior to recurrence of disease. Conclusion. HSCT can be performed safely in patients with RA, and initial results indicate significant responses in patients with severe, treatment-resistant disease. Similar outcomes were observed in patients undergoing HSCT with unmanipulated cells and those receiving CD34-selected cells. Larger studies are needed to confirm these findings.
Resumo:
The aims of the study were to compare the pathogenesis of Candida albicans infection in various organs and anatomical regions of C5-deficient (DBA/2) and C5-sufficient (BALB/c) mice, and to evaluate the importance of complement C5 and T lymphocytes as factors that determine host susceptibility or resistance. The kidneys of DBA/2 mice showed higher colonisation and more severe tissue damage than those of BALB/c, but infection at other sites, including oral and vaginal mucosa, was generally similar in the two strains. Passive transfer of C5-sufficient serum into DBA/2 mice decreased the fungal burden in the kidney, and prolonged survival of the reconstituted animals. Depletion of CD4(+) and/or CD8(+) cells did not exacerbate either systemic or mucosal infection when compared to controls, and passive transfer of splenocytes from infected donors caused only a small and transient reduction in numbers of yeasts recovered from the kidney of sub-lethally infected recipients. It is concluded that the acute susceptibility of the kidneys in this mouse strain is due to C5 deficiency expressed on a susceptible genetic background. T lymphocytes, however, appear to have minimal influence on recovery from systemic infection with this isolate of C. albicans. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Although cytokinins (CKs) are widely thought to have a role in promoting shoot branching, there is little data supporting a causative or even a correlative relationship between endogenous CKs and timing of bud outgrowth. We previously showed that lateral bud CK content increased rapidly following shoot decapitation. However, it is not known whether roots are the source of this CK. Here, we have used shoot decapitation to instantaneously induce lateral bud release in chickpea seedlings. This treatment rapidly alters rate and direction of solvent and solute (including CK) trafficking, which may be a passive signalling mechanism central to initiation of lateral bud release. To evaluate changes in xylem transport, intact and decapitated plants were infiltrated with [H-3]zeatin riboside ([H-3]ZR), a water-soluble blue dye or [H-3]H2O by injection into the hypocotyl. All three tracers were recovered in virtually all parts of the shoot within I h of injection. In intact plants, solute accumulation in the lateral bud at node 1 was significantly less than in the adjacent stipule and nodal tissue. In decapitated plants, accumulation of [H-3]ZR and of blue dye in the same bud position was increased 3- to 10-fold relative to intact plants, whereas content of [H-3]H2O was greatly reduced indicating an increased solvent throughput. The stipule and cut stem, predicted to have high evapotranspiration rates, also showed increased solute content accompanied by enhanced depletion of [H-3]H2O. To assess whether metabolism modifies quantities of active CK reaching the buds, we followed the metabolic fate of [H-3]ZR injected at physiological concentrations. Within 1 h, 80-95% of [H-3]ZR was converted to other active CKs (mainly zeatin riboside-5'phosphate (ZRMP) and zeatin (Z)), other significant, but unconfirmed metabolites some of which may be active (O-acetylZR, O-acetylZRMP and a compound correlated with sites of high CK-concentrations) and inactive catabolites (adenosine, adenine, 5'AMP and water). Despite rapid metabolic degradation, the total active label, which was indicative of CK concentration in buds, increased rapidly following decapitation. It can be inferred that xylem sap CKs represent one source of active CKs appearing in lateral buds after shoot decapitation.
Resumo:
Aims: This study was designed to investigate the influence of angiotensin II (Ang II) and nitric oxide (NO) on autoregulation of renal perfusion. Methods: Autoregulation was investigated in isolated perfused kidneys (IPRK) from Sprague-Dawley rats during stepped increases in perfusion pressure. Results: Ang II (75-200 pM) produced dose-dependent enhancement of autoregulation whereas phenylephrine produced no enhancement and impaired autoregulation of GFR. Enhancement by Ang II was inhibited by the AT(1) antagonist, Losartan, and the superoxide scavenger, Tempol. Under control conditions nitric oxide synthase (NOS) inhibition by 10 muM N-omega-nitro-L-arginine methyl ester (L-NAME) facilitated autoregulation in the presence of non-specific cyclooxygenase (COX) inhibition by 10 muM indomethacin. Both COX and combined NOS/COX inhibition reduced the autoregulatory threshold concentration of Ang II. Facilitation by 100 pM Ang II was inhibited by 100 muM frusemide. Methacholine (50 nM) antagonised Ang II-facilitated autoregulation in the presence and absence of NOS/COX inhibition. Infusion of the NO donor, 1 muM sodium nitroprusside, inhibited L-NAME enhancement of autoregulation under control conditions and during Ang II infusion. Conclusions: The results suggest than an excess of NO impairs autoregulation under control conditions in the IPRK and that endogenous and exogenous NO, vasodilatory prostaglandins and endothelium-derived hyperpolarizing factor (EDHF) activity antagonise Ang II-facilitated autoregulation. Ang II also produced a counterregulatory vasodilatory response that included prostaglandin and NO release. We suggest that Ang II facilitates autoregulation by a tubuloglomerular feedback-dependent mechanism through AT(1) receptor-mediated depletion of nitric oxide, probably by stimulating generation of superoxide.
Resumo:
Objective To evaluate cardiac electrical function in the Spectacled Flying Fox (bat) infested with Ixodes holocyclus. Design Prospective clinical investigation of bats treated for naturally occurring tick toxicity. Procedure ECGs were performed on bats with tick toxicity (n = 33), bats that recovered slowly (n = 5) and normally (n = 5) following treatment for tick toxicity, and on normal bats with no history of tick toxicity (n = 9). Results Bats with tick toxicity had significantly prolonged corrected QT intervals, bradycardia and rhythm disturbances which included sinus bradydysrhythmia, atrial standstill, ventricular premature complexes, and idioventricular bradydysrhythmia. Conclusions The QT prolongation observed on ECG traces of bats with tick toxicity reflected delayed ventricular repolarisation and predisposed to polymorphic ventricular tachycardia and sudden cardiac death in response to sympathetic stimulation. The inability to document ventricular tachycardia in bats shortly before death from tick toxicity may be explained by a lack of sympathetic responsiveness attributable to the unique parasympathetic innervation of the bat heart, or hypothermiainduced catecholamine receptor down-regulation. Bradycardia and rhythm disturbances may be attributable to hypothermia.
Resumo:
A transitory increase in blood pressure (BP) is observed following upper airway surgery for obstructive sleep apnea syndrome but the mechanisms implicated are not yet well understood. The objective of the present study was to evaluate changes in BP and heart rate (HR) and putative factors after uvulopalatopharyngoplasty and septoplasty in normotensive snorers. Patients (N = 10) were instrumented for 24-h ambulatory BP monitoring, nocturnal respiratory monitoring and urinary catecholamine level evaluation one day before surgery and on the day of surgery. The influence of postsurgery pain was prevented by analgesic therapy as confirmed using a visual analog scale of pain. Compared with preoperative values, there was a significant (P < 0.05) increase in nighttime but not daytime systolic BP (119 ± 5 vs 107 ± 3 mmHg), diastolic BP (72 ± 4 vs 67 ± 2 mmHg), HR (67 ± 4 vs 57 ± 2 bpm), respiratory disturbance index (RDI) characterized by apnea-hypopnea (30 ± 10 vs 13 ± 4 events/h of sleep) and norepinephrine levels (22.0 ± 4.7 vs 11.0 ± 1.3 µg l-1 12 h-1) after surgery. A positive correlation was found between individual variations of BP and individual variations of RDI (r = 0.81, P < 0.01) but not between BP or RDI and catecholamines. The visual analog scale of pain showed similar stress levels on the day before and after surgery (6.0 ± 0.8 vs 5.0 ± 0.9 cm, respectively). These data strongly suggest that the cardiovascular changes observed in patients who underwent uvulopalatopharyngoplasty and septoplasty were due to the increased postoperative RDI.