929 resultados para cassia rugosa extract


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of allelopathic activity has been aim of research that evaluates mainly species used in green fertilization. Raphanus sativus L. stands out among these species, because it shows high capacity for nutrient recycling, specially nitrogen and phosphorus, what makes it an advantageous cover plant in crop rotation systems. Considering the exposed, the present study had as objective the evaluation of the allelopathic and phytotoxic potentials of different concentrations of the R. sativus leaves ethanolic extract by mean of seeds germination analyses and development of lettuce seedlings, evaluating the phytotoxicity by determination of the mitotic index of lettuce root cells, realizing the phytochemical profile and investigating the antioxidant activity. It was possible to verify that the R. sativus extract interferes in the germination index, decreasing the germinability (5 mg. mL(-1) = 9.84%; 10 mg. mL(-1) = 11.91% and 20 mg. mL(-1)= 57.51%). In the lettuce seedlings growth, the extract of this species affected the roots and hypocotyls growth. It was possible to observe phenols and total flavonoids in the extract for the concentration of 1000 mu g. mL(-1)(161mg and 83.57 mg, respectively). It was also observed, higher antioxidant activity for the concentration of 1000 mu g. mL(-1) (89.76%). In the phytotoxicity assay was observed a dose dependent effect in the mitotic index and in the cellular events during cellular division. In this study it was possible to conclude that this species has allelochemical compounds which are able to interfere directly on the stabilization and development of other species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objective: Antimicrobial peptides, such as beta-defensins, secreted by gingival epithelial cells, are thought to play a major role in preventing periodontal diseases. In the present study, we investigated the ability of green tea polyphenols to induce human beta-defensin (hBD) secretion in gingival epithelial cells and to protect hBDs from proteolytic degradation by Porphyromonas gingivalis.Material and Methods: Gingival epithelial cells were treated with various amounts (25-200 mu g/mL) of green tea extract or epigallocatechin-3-gallate (EGCG). The secretion of hBD1 and hBD2 was measured using ELISAs, and gene expression was quantified by real-time PCR. The treatments were also carried out in the presence of specific kinase inhibitors to identify the signaling pathways involved in hBD secretion. The ability of green tea extract and EGCG to prevent hBD degradation by proteases of P. gingivalis present in a bacterial culture supernatant was evaluated by ELISA.Results: The secretion of hBD1 and hBD2 was up-regulated, in a dose-dependent manner, following the stimulation of gingival epithelial cells with a green tea extract or EGCG. Expression of the hBD gene in gingival epithelial cells treated with green tea polyphenols was also increased. EGCG-induced secretion of hBD1 and hBD2 appeared to involve extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Lastly, green tea extract and EGCG prevented the degradation of recombinant hBD1 and hBD2 by a culture supernatant of P. gingivalis.Conclusion: Green tea extract and EGCG, through their ability to induce hBD secretion by epithelial cells and to protect hBDs from proteolytic degradation by P. gingivalis, have the potential to strengthen the epithelial antimicrobial barrier. Future clinical studies will indicate whether these polyphenols represent a valuable therapeutic agent for treating/preventing periodontal diseases.