935 resultados para buffalo grass


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixteen early to mid lactation Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and a 4 5 2 factorial arrangement of treatments to evaluate the effects of heat-treated rapeseed expeller and solvent-extracted soya-bean meal protein supplements on animal performance. Dietary treatments consisted of grass silage offered ad libitum supplemented with a fixed amount of a cereal based concentrate (10 kg/day on a fresh weight basis) containing 120, 150, 180 or 210 g crude protein (CP) per kg dry matter (DM). Concentrate CP content was manipulated by replacement of basal ingredients (g/kg) with either rapeseed expeller (R; 120, 240 and 360) or soya-bean meal (S; 80, 160 and 240). Increases in concentrate CP stimulated linear increases (P < 0.05) in silage intake (mean 22.5 and 23.8 g DM per g/kg increase in dietary CP content, for R and S, respectively) and milk production. Concentrate inclusion of rapeseed expeller elicited higher (P < 0.01) milk yield and milk protein output responses (mean 108 and 3.71 g/day per g/kg DM increase in dietary CP content) than soya-bean meal (corresponding values 62 and 2.57). Improvements in the apparent utilization of dietary nitrogen for milk protein synthesis (mean 0.282 and 0.274, for R and S, respectively) were associated with higher (P < 0.05) plasma concentrations of histidine, branched-chain, essential and total amino acids (35, 482, 902 and 2240 and 26, 410, 800 and 2119 mu mol/l, respectively) and lower (P < 0.01) concentrations of urea (corresponding values 4.11 and 4.52 mmol/l). Heat-treated rapeseed expeller proved to be a more effective protein supplement than solvent-extracted soya-bean meal for cows offered grass silage-based diets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curd rheology and calcium distribution in buffalo and cows’ milk, were compared at their natural pH and during acidification (pH 6.5–5.6). Buffalo milk displays a curd structure and rheology different from that of cows’ milk and the casein-bound calcium, as well as the contents of fat, protein and calcium, are also higher. Due to these higher amounts of casein-bound calcium, the overall curd strength with buffalo milk (as indicated by the dynamic moduli) was higher, at similar pH values, than those of equivalent gels produced from cows’ milk. The curd rheology was adversely affected at lower pH (5.8–5.6) in both of the milk types, due to the loss of casein-bound calcium from casein micelles. The degree of solubilisation of calcium in buffalo milk during acidification is quite different from that observed in cows’ milk with a lower proportion of the calcium being solubilised in the former. The maximum curd firmness was obtained at pH 6.0 in both milk types. For both species, these rheological and micellar changes were qualitatively the same but quantitatively different, due to the different milk compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are approximately 29,000 ha of grass buffer strips in the UK under Agri-Environment Schemes; however, typically they are floristically poor and as such are of limited biodiversity value. Introducing a sown wildflower component has the potential to increase dramatically the value of these buffer strips for a suite of native species, including butterflies. This study investigates management practices aiming to promote the establishment and maintenance of wildflowers in existing buffer strips. The effectiveness of two methods used to increase the establishment of wildflowers for the benefit of native butterfly species were tested, both individually and in combination. The management practices were: (1) the application of a selective graminicide (fluazifop-P-butyl) which reduces the dominance of competitive grasses; and (2) scarification of the soil which creates germination niches for sown wildflower seeds. A wildflower seed mix consisting of nine species was sown in conjunction with the scarification treatment. Responses of wildflowers and butterflies were monitored for two years after establishment. Results indicate that the combined scarification and graminicide treatment produced the greatest cover and species richness of sown wildflowers. Butterfly abundance, species richness and diversity were positively correlated with sown wildflower species richness, with the highest values in the combined scarification and graminicide treatment. These findings have confirmed the importance of both scarification as a means of introducing wildflower seed into existing buffer strips, and subsequent management using graminicides, for the benefit of butterflies. Application of this approach could provide tools to help butterfly conservation on farmland in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH(4)) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH oil the production of individual volatile fatty acids and CH, as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed oil CH(4) emission, with a maximum difference (across all forage types and all levels of DM 1) of 49 and 77% in g CH(4)/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0.1 and 0.4, respectively (values ranging from 10.2 to 19.5 g CH(4)/kg FCM). The lowest emission was established for early Cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH(4)/kg FCM declined oil average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0.1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0.4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH, emission per kg FCM mainly as a result of a higher DM I and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with COWS consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0.12 of the observed mean. Both observed and predicted emission expressed in g CH(4)/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH, emission in cattle sheds oil Dutch dairy farms and indicated that oil average a fraction of 0.28 of the total emissions must have originated from manure under these circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buffalo curd gave higher amount of yield than cows’ curd at similar processing conditions. Curd moisture was decreased with the increase of gelation temperatures in both types of milk. Curd cutting time of 45 minutes was found optimum for Mozzarella cheese making from both milk samples. Centrifugation method is simpler, quicker and more reproducible than Buchner funnel method. Buffalo milk contains higher amounts of αs1- , β- and к-casein as compared to cows’ milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rheology and microstructure of Mozzarella-type curds made from buffalo and cows’ milk were measured at gelation temperatures of 28, 34 and 39 °C after chymosin addition. The maximum curd strength (G′) was obtained at a gelation temperature of 34 °C in both types of bovine milk. The viscoelasticity (tan δ) of both curds was increased with increasing gelation temperature. The rennet coagulation time was reduced with increase of gelation temperature in both types of milk. Frequency sweep data (0.1–10Hz was recorded 90 min after chymosin addition, and both milk samples showed characteristics of weak viscoelastic gel systems. When both milk samples were subjected to shear stress to break the curd system at constant shear rate, 95 min after chymosin addition, the maximum yield stress was obtained at the gelation temperatures of 34 °C and 28 °C in buffalo and cows’ curd respectively. The cryo-SEM and CLSM techniques were used to observe the microstructure of Mozzarella-type curd. The porosity was measured using image J software. The cryo-SEM and CLSM micrographs showed that minimum porosity was observed at the gelation temperature of 34 °C in both types of milk. Buffalo curd showed minimum porosity at similar gelation temperature when compared to cows’ curd. This may be due to higher protein concentration in buffalo milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rennet-induced curd was made from both natural buffalo and cows’ milk, and ultrafiltered cows’ milk (cows’ milk was concentrated such that it had a chemical composition approximately equivalent to that of the buffalo milk). These milk samples were compared on the basis of their rheology, physicochemical characteristics and curd microstructure. The ionic and soluble calcium contents were found to be similar in all milk samples studied. The total and casein bound calcium were higher in concentrated cows’ milk than in standard cows’ milk. Both cows’ milk types were found to have lower total and casein bound calcium than the buffalo milk. This is probably due to concentration of the colloidal part of milk (casein), during the ultrafiltration (UF) process. The rennet coagulation time was similar in UF cows’ and buffalo milk while both were shorter when compared with that of the cows’ milk. The dynamic moduli (G′, G″) values were higher in both the buffalo and UF cows’ milk than in the cows’ milk after 90 min coagulation. The loss tangent, however, was found to be similar in both the UF cows’ and buffalo milk curds and was lower than that observed for the cows’ milk (0.42, 0.42 and 0.48, respectively). The frequency profile of each type of curd was recorded 90 min after the enzyme addition (0.1–10 Hz); all samples were found to be “weak” viscoelastic, frequency dependent gels. The yield stress was also measured 95 min after the enzyme addition, and a higher value was observed in buffalo milk curd when compared with other curd samples made from both the natural cows’ milk and the UF cows’ milk. The cryo-scanning electron and confocal laser scanning micrographs showed that curd structure appeared to be more “dense” and less porous in buffalo milk than cows’ milk even after concentration to equivalent levels of protein/total solids to those found in the buffalo milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buffalo milk contains (40–60 %) more protein, fat and calcium than cows’ milk. These constituents were enhanced by ultrafiltration (UF) of cows’ milk to give a product with similar levels to those found in the buffalo milk. Mozzarella-type curd was made from buffalo, cows’ and UF cows’ milk to compare the overall curd yield and quality. The curd yield on both dry and wet weight basis, curd moisture content and overall curd fat retention were found to be higher in the UF cows’ milk than for either the buffalo or the cows’ milk preparations. The minimum whey fat losses occurred in the UF cows’ curd when compared to the cows’ and the buffalo curd. The whey protein losses were found to be higher in the UF cows’ curd than those for the buffalo and the cows’ curds. The total mineral content of the curd was also higher in the UF cows’ milk than that found in either the buffalo or the cows’ milk. SEM micrographs showed that casein micelles sizes were different in the two different types of milk. Casein micelles were also observed to be deformed in the UF cows’ milk samples. UF cows’ milk contained higher amounts of both the αs1- and αs2-casein moieties than either the buffalo or the cows’ milk. Buffalo milk was found to contain a higher concentration of β-casein than either the UF cows’ or untreated cows’ milk samples. Gel strength was found to be higher in the resultant buffalo curd than for curds made from either native cows’ milk or those made from UF cows’ milk. The mineral distribution was also different in the three different types of bovine milk, measured by energy-dispersive X-ray (EDX) analysis. Differences in the curd quality observed between the buffalo and the cows’ milk appear to result from the differences in casein composition and overall micelle structure, rather than casein concentration alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grass buffer strips have been widely sown to mitigate against intensive agricultural management practices that have negatively impacted on invertebrate and plant biodiversity in arable farming systems. Typically, such strips are floristically species poor and are dominated by grasses. In the present study, we developed management practices to enhance the floristic and structural diversity of these existing strips for the benefit of spiders, a key provider of natural pest control in crops. Across three UK arable farms, we investigated the benefits of: (i) scarification to create germination niches into which wildflower seeds were sown and (ii) the effect of graminicide applications to suppress grass dominance. Spiders were sampled twice per year (July and September) during 2008 and 2009. The combination of scarification with wildflower seeds, as well as graminicide, resulted in the greatest wildflower cover and lowest grass cover, with a general trend of increased abundance of adult and juvenile spiders. The abundance of Pachygnatha degeeri, Bathyphantes gracilis and juvenile wolf spiders of the genus Pardosa was positively correlated with wildflower cover, probably reflecting increased prey availability. Sward structure was negatively correlated with Erigone atra, Oedothorax fuscus and juvenile Pardosa abundance. Management that utilizes existing commonly adopted agri-environment options, such as grass buffer strips, represents a potentially important conservation tool for increasing the quantity and quality of invertebrate habitats. This can maximize opportunities for the provision of multiple ecosystem services, including pest regulation by predators such as spiders. These management practices have the potential to be incorporated into existing U.K. and European agri-environment schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key processes that drives rhizosphere microbial activity is the exudation of soluble organic carbon (C) by plant roots. We describe an experiment designed to determine the impact of defoliation on the partitioning and movement of C in grass (Lolium perenne L.), soil and grass-sterile sand microcosms, using a (13)CO(2) pulse-labelling method. The pulse-derived (13)C in the shoots declined over time, but that of the roots remained stable throughout the experiment. There were peaks in the atom% (13)C of rhizosphere CO(2) in the first few hours after labelling probably due to root respiration, and again at around 100 h. The second peak was only seen in the soil microcosms and not in those with sterilised sand as the growth medium, indicating possible microbial activity. Incorporation of the (13)C label into the microbial biomass increased at 100 h when incorporation into replicating cells, as indicated by the amounts of the label in the microbial DNA, started to increase. These results indicate that the rhizosphere environment is conducive to bacterial growth and replication. The results also show that defoliation had no impact on the pattern of movement of (13)C from plant roots into the microbial population in the rhizosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In much of the English-speaking world the lawn is the most common of all garden features. For arguably a millennium it has played a significant role in the landscape and during that period it has been inextricably linked with grasses. Nevertheless other plant species have accompanied the grasses and also been used in creating lawns. From medieval wildflowers to Victorian weeds, the plants that challenge the formal concept of the perfect lawn have journeyed with it but have until recently remained only small players within the dominion of grass. By the beginning of the 21st century, with a new environmental ethos permeating the garden, the long journey of the grassy lawn and its plant companions has led to the grass monoculture being heretically rethought: by removing both the monoculture and the grass.