962 resultados para boundary integral equation method
Resumo:
El objetivo de la tesis es la investigación de algoritmos numéricos para el desarrollo de herramientas numéricas para la simulación de problemas tanto de comportamiento en la mar como de resistencia al avance de buques y estructuras flotantes. La primera herramienta desarrollada resuelve el problema de difracción y radiación de olas. Se basan en el método de los elementos finitos (MEF) para la resolución de la ecuación de Laplace, así como en esquemas basados en MEF, integración a lo largo de líneas de corriente, y en diferencias finitas desarrollados para la condición de superficie libre. Se han desarrollado herramientas numéricas para la resolución de la dinámica de sólido rígido en sistemas multicuerpos con ligaduras. Estas herramientas han sido integradas junto con la herramienta de resolución de olas difractadas y radiadas para la resolución de problemas de interacción de cuerpos con olas. También se han diseñado algoritmos de acoplamientos con otras herramientas numéricas para la resolución de problemas multifísica. En particular, se han realizado acoplamientos con una herramienta numérica basada de cálculo de estructuras con MEF para problemas de interacción fluido-estructura, otra de cálculo de líneas de fondeo, y con una herramienta numérica de cálculo de flujos en tanques internos para problemas acoplados de comportamiento en la mar con “sloshing”. Se han realizado simulaciones numéricas para la validación y verificación de los algoritmos desarrollados, así como para el análisis de diferentes casos de estudio con aplicaciones diversas en los campos de la ingeniería naval, oceánica, y energías renovables marinas. ABSTRACT The objective of this thesis is the research on numerical algorithms to develop numerical tools to simulate seakeeping problems as well as wave resistance problems of ships and floating structures. The first tool developed is a wave diffraction-radiation solver. It is based on the finite element method (FEM) in order to solve the Laplace equation, as well as numerical schemes based on FEM, streamline integration, and finite difference method tailored for solving the free surface boundary condition. It has been developed numerical tools to solve solid body dynamics of multibody systems with body links across them. This tool has been integrated with the wave diffraction-radiation solver to solve wave-body interaction problems. Also it has been tailored coupling algorithms with other numerical tools in order to solve multi-physics problems. In particular, it has been performed coupling with a MEF structural solver to solve fluid-structure interaction problems, with a mooring solver, and with a solver capable of simulating internal flows in tanks to solve couple seakeeping-sloshing problems. Numerical simulations have been carried out to validate and verify the developed algorithms, as well as to analyze case studies in the areas of marine engineering, offshore engineering, and offshore renewable energy.
Application of the Boundary Method to the determination of the properties of the beam cross-sections
Resumo:
Using the 3-D equations of linear elasticity and the asylllptotic expansion methods in terms of powers of the beam cross-section area as small parameter different beam theories can be obtained, according to the last term kept in the expansion. If it is used only the first two terms of the asymptotic expansion the classical beam theories can be recovered without resort to any "a priori" additional hypotheses. Moreover, some small corrections and extensions of the classical beam theories can be found and also there exists the possibility to use the asymptotic general beam theory as a basis procedure for a straightforward derivation of the stiffness matrix and the equivalent nodal forces of the beam. In order to obtain the above results a set of functions and constants only dependent on the cross-section of the beam it has to be computed them as solutions of different 2-D laplacian boundary value problems over the beam cross section domain. In this paper two main numerical procedures to solve these boundary value pf'oblems have been discussed, namely the Boundary Element Method (BEM) and the Finite Element Method (FEM). Results for some regular and geometrically simple cross-sections are presented and compared with ones computed analytically. Extensions to other arbitrary cross-sections are illustrated.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (PH.D.)--University of Virginia, 1916.
Resumo:
Mode of access: Internet.
Resumo:
The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.
Resumo:
in this paper we investigate the solvability of the Neumann problem (1.1) involving the critical Sobolev exponents on the right-hand side of the equation and in the boundary condition. It is assumed that the coefficients Q and P are smooth. We examine the common effect of the mean curvature of the boundary a deltaOhm and the shape of the graph of the coefficients Q and P on the existence of solutions of problem (1.1). (C) 2003 Published by Elsevier Inc.
Resumo:
We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H-2 reaction, revealing excellent performance characteristics. (C) 2004 American Institute of Physics.
Resumo:
This work formulates existence theorems for solutions to two-point boundary value problems on time scales. The methods used include maximum principles, a priori bounds and topological degree theory.
Resumo:
This research investigated the galvanic corrosion of the magnesium alloy AZ91D coupled to steel. The galvanic current distribution was measured in 5% NaCl solution, corrosive water and an auto coolant. The experimental measurements were compared with predictions from a Boundary Element Method (BEM) model. The boundary condition, required as an input into the BEM model, needs to be a polarization curve that accurately reflects the corrosion process. Provided that the polarization curve does reflect steady state, the BEM model is expected to be able to reflect steady state galvanic corrosion.
Resumo:
We consider the solvability of the Neumann problem for the equation -Delta u + lambda u = 0, partial derivative u/partial derivative v = Q(x)vertical bar u vertical bar(q-2)u on partial derivative Omega, where Q is a positive and continuous coefficient on partial derivative Omega, lambda is a parameter and q = 2(N - 1)/(N - 2) is a critical Sobolev exponent for the trace embedding of H-1(Omega) into L-q(partial derivative Omega). We investigate the joint effect of the mean curvature of partial derivative Omega and the shape of the graph of Q on the existence of solutions. As a by product we establish a sharp Sobolev inequality for the trace embedding. In Section 6 we establish the existence of solutions when a parameter lambda interferes with the spectrum of -Delta with the Neumann boundary conditions. We apply a min-max principle based on the topological linking.
Resumo:
The first part of the thesis compares Roth's method with other methods, in particular the method of separation of variables and the finite cosine transform method, for solving certain elliptic partial differential equations arising in practice. In particular we consider the solution of steady state problems associated with insulated conductors in rectangular slots. Roth's method has two main disadvantages namely the slow rate of convergence of the double Fourier series and the restrictive form of the allowable boundary conditions. A combined Roth-separation of variables method is derived to remove the restrictions on the form of the boundary conditions and various Chebyshev approximations are used to try to improve the rate of convergence of the series. All the techniques are then applied to the Neumann problem arising from balanced rectangular windings in a transformer window. Roth's method is then extended to deal with problems other than those resulting from static fields. First we consider a rectangular insulated conductor in a rectangular slot when the current is varying sinusoidally with time. An approximate method is also developed and compared with the exact method.The approximation is then used to consider the problem of an insulated conductor in a slot facing an air gap. We also consider the exact method applied to the determination of the eddy-current loss produced in an isolated rectangular conductor by a transverse magnetic field varying sinusoidally with time. The results obtained using Roth's method are critically compared with those obtained by other authors using different methods. The final part of the thesis investigates further the application of Chebyshdev methods to the solution of elliptic partial differential equations; an area where Chebyshev approximations have rarely been used. A poisson equation with a polynomial term is treated first followed by a slot problem in cylindrical geometry.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of ` 12 ` 12 `$12 `&12 `#12 `^12 `_12 `%12 `~12 *Kozlov91 applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods.