917 resultados para body temperature
Resumo:
We analyzed projections of current and future ambient temperatures along the eastern United States in relationship to the thermal tolerance of harbor seals in air. Using the earth systems model (HadGEM2-ES) and representative concentration pathways (RCPs) 4.5 and 8.5, which are indicative of two different atmospheric CO2 concentrations, we were able to examine possible shifts in distribution based on three metrics: current preferences, the thermal limit of juveniles, and the thermal limits of adults. Our analysis focused on average ambient temperatures because harbor seals are least effective at regulating their body temperature in air, making them most susceptible to rising air temperatures in the coming years. Our study focused on the months of May, June, and August from 2041-2060 (2050) and 2061-2080 (2070) as these are the historic months in which harbor seals are known to annually come ashore to pup, breed, and molt. May, June, and August are also some of the warmest months of the year. We found that breeding colonies along the eastern United States will be limited by the thermal tolerance of juvenile harbor seals in air, while their foraging range will extend as far south as the thermal tolerance of adult harbor seals in air. Our analysis revealed that in 2070, harbor seal pups should be absent from the United States coastline nearing the end of the summer due to exceptionally high air temperatures.
Resumo:
Les procédures appliquées avant l’abattage des animaux influencent directement la qualité de la viande en modulant l’état physiologique des porcs; ainsi, l’augmentation de la température corporelle, les taux élevés de lactate sanguin et l’épuisement des réserves de glycogène entre autres, occasionnent la majorité des baisses de qualité. L’objectif de cette thèse était de valider des outils indicateurs de stress porcin pour les fermes et les abattoirs. Ceux-ci seraient appliqués à la surveillance du bien-être animal et à la prédiction de variation de qualité de la viande porcine au niveau commercial. Premierement, les résultats de la thèse ont permis de conclure qu’un des outils développés (analyseur portatif de lactate) mesure la variation du niveau de lactate sanguin associé à l’état physiologique des porcs dans la phase péri-mortem et aide à expliquer la variation de la qualité de la viande chez le porc à l’abattoir, en particulier dans les muscles du jambon. Deuxièmement, les résultats des audits du bien-être animal appliqués de la ferme à l’abattoir ont démontré que la qualité du système d’élevage à la ferme d’origine et les compétences du chauffeur de camion sont d’importants critères affectant la réponse comportementale des porcs à la manipulation avant l’abattage. Ces résultats ont également démontré que les conditions de logement à la ferme (la faible densité et l’enrichissement dans les enclos), le comportement des porcs en période pré-abattage (glissade), ainsi que les interventions du manipulateur (utilisation du bâton électrique) dans la zone d’étourdissement de l’abattoir affectent négativement la variation de la qualité de la viande. L’application des protocoles d’audits dans la filière porcine a également démontré que le respect des critères de bien-être animal fixés par un outil de vérification est primordiale et permet de contrôler les conditions de bien-être des porcs à chaque étape de la période pré-abattage, de produire une viande de qualité supérieure et de réduire les pertes. Les audits de bien-être animal sont donc un outil qui apporte des resultats très pertinents pour aider a éviter les variations de la qualité de la viande chez le porc. Troisièmement, la thermographie infrarouge s’est avéré être une technique prometteuse permettant d’évaluer la variation de température corporelle de l’animal pendant et après un stress physique, en particulier lorsque cette mesure est prise derrière les oreilles. En conclusion, les outils validés à travers cette thèse représentent des méthodologies non invasives et potentiellement complémentaires à d’autres approches d’évaluation de l’état physiologique et du bien-être animal par rapport au stress, permettant de réduire les pertes de qualité de viande (par exemple en utilisation conjointe avec le niveau de lactate sanguin et les indicateurs de stress comportemental, entre autres).
Resumo:
Probióticos são definidos como microrganismos vivos, que quando administrados em quantidades adequadas, conferem benefícios à saúde do hospedeiro. Atualmente a pesquisa de microrganismos probióticos a partir da fermentação da azeitona tem-se centrado nas bactérias ácido-lácticas, sendo escassos os estudos envolvendo leveduras. No presente trabalho avaliou-se o potencial probiótico de estirpes de leveduras previamente isoladas durante o processo de fermentação natural de azeitona de mesada cultivar Negrinha de Freixo. Foram avaliadas 16 estirpes em relação à atividade enzimática (catalase, amilase, xilanase, protease e β-glucosidase); ao crescimento a 37ºC; ação inibitória frente a microrganismos patogénicos; capacidade de autoagregação; atividade antioxidante (utilizando o método de DPPH); e resistência ao aparelho digestivo humano, a partir de uma simulação in vitro da digestão gástrica e pancreática. Os resultados apresentados para a atividade enzimática indicaram que em alguns isolados foi detetado fraca atividade das enzimas protease, xilanase e amilase. Já uma atividade forte de lipase foi observada nas estirpes Pichia manshurica e Saccharomyces cerevisiae (15A e 15B). Para a enzima β-glucosidase, identificou-se atividade forte em Rhodotorula graminis, Rhodotorula glutinis, Candida norvegica, Pichia guilliermondii e Galactomyces reessii. Relativamente à capacidade de crescimento à temperatura corporal (37ºC), três estirpes (Saccharomyces cerevisiae 15B; Candida tropicalis 1A; e Pichia membranifaciens 29A) destacaram-se por apresentar maior taxa específica de crescimento. A capacidade bloqueadora dos radicais livres DPPH foi verificada em 10 estirpes, sendo as estirpes de S. cerevisiae as que mais se destacaram dentre as outras. As estirpes C. norvegica e G. reessii (34A) apresentaram capacidade antifúngica frente ao microrganismo patogénico Cryptococcus neoformans. Em relação à capacidade de autoagregação avaliada, as estirpes S. cerevisiae (15A), Candida tropicalis (1A) e C. norvegica (7A) apresentaram ao fim de 24 horas percentagens superiores a 80%. Relativamenteà resistência frente às condições presentes no trato gastrointestinal in vitro, a estirpe P. guilliermondii (25A), destacou-se dentre as demais, por apresentar maior capacidade de sobrevivência em todo o processo digestivo simulado. As estirpes Candida boidinii (37A) e S. cerevisiae (15A) apresentaram menor capacidade de sobrevivência nestas condições. Contudo, serão necessários testes adicionais para complementar estes resultados.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Saúde, 2015.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Saúde, 2015.
Resumo:
Purpose: To investigate the ethnomedicinal claims regarding the use of Acacia jacquemontii Benth. (Fabaceae) in fever, pain and inflammation. Methods: The methanol root bark extract (AJRBM) of the plant was used in the studies. Preliminary phytochemical screening of the extract was carried out according to established methods. Analgesic, anti-inflammatory and antipyretic activities were evaluated using acetic acid-induced writhing, carrageennan-induced rat paw edema and Brewer’s yeast-induced pyrexia models, respectively. The extract was administered at doses of 50 and 100 mg/kg. Aspirin (300 mg/kg, p.o.) was used as a reference drug in all models. Normal saline (10 mL/kg p.o.) was used as negative control. Results: Phytochemical screening results indicate the presence of cardioactive glycosides, tannins, flavonoids and saponins. In the acetic acid-induced writhing model, the methanol extract exhibited significant (p < 0.05) analgesic effect with 58.98 % reduction in writhing response at a dose of 100 mg/kg, compared with untreated control group. The extract significantly (p < 0.05) reduced carrageenan-induced edema at doses of 50 and 100 mg/kg to 36.84 and 47.36 %, respectively, after 1 h of extract administration. The extract exhibited predominantly dose-dependent antipyretic effect in Brewer’s yeast-induced pyrexia model. Maximum reduction in body temperature to 37.07 and 38.29 ºC at doses of 50 and 100 mg/kg, respectively, was observed, compared with untreated group (38.90 ºC) after 1 h, but this was not significant (p < 0.05). Conclusion: The plant extract exerts inhibitory effect on peripheral pain stimuli, edema and dosedependent anti-pyrexia, and thus justifies the ethnomedicinal use of Acacia jacquemontii Benth. in the management of pain, fever and inflammation.
Resumo:
The Mine Improvement and New Emergency Response (MINER) Act of 2006 implemented new regulations in the underground coal mining industry that allow for the certification of non-compressed gas equipment for respiratory protection in underground coal mines. NASA’s Kennedy Space Center (KSC) Biomedical Research and Engineering Laboratory (BRL) is investigating the potential to expand cryogenic air supply systems into the mining and general industries. These investigations have, so far, resulted in four separate comparison and hardware development programs. The Propellant Handlers Ensemble (PHE) and Level “A” Ensemble Comparison (LAE): This study compared worker thermal stress while using the industry standard Level A hazardous material handling ensemble as opposed to using the similarly protective Propellant Handler’s Ensemble (PHE) that utilizes a cryogenic air supply pack, known as an Environmental Control Unit (ECU) as opposed to the compressed air Self Contained Breathing Apparatus (SCBA) used in the LAE. The research found that, in a 102°F environment, test subjects experienced significantly decreased body temperature increases, significantly decreased heart rate increases, and decreased sweat loss while performing a standard work routine while using the PHE, compared to the same test subjects performing the same routine while using the LAE. The Cryogenic Refuge Alternative Supply System (CryoRASS) project: The MINER Act of 2006 requires the operators of underground coal mines to provide refuge alternatives that can provide a safe atmosphere for workers for up to 96 hours in the event of a mine emergency. The CryoRASS project retrofitted an existing refuge chamber with a liquid air supply instead of the standard compressed air supply system and performed a 96 hour test. The CryoRASS system demonstrated that it provided a larger air supply in a significantly smaller footprint area, provided humidity and temperature control, and maintained acceptable oxygen and carbon dioxide levels in the chamber for the required amount of time. SCBA and Mine Rescue System (CryoBA/CryoASFS) Another requirement of the MINER Act is that additional emergency breathing equipment must be staged along evacuation routes to supplement the Self Contained/Self Rescue (SCSR) devices that are now required. The BRL has developed an SCBA known as the Cryogenic Breathing Apparatus (CryoBA), that has the ability to provide 2 hours of breathing air, a refill capability, and some cooling for the user. Cryogenic Air Storage and Filling Stations (CryoASFS) would be positioned in critical areas to extend evacuation time. The CryoASFS stations have a significantly smaller footprint and larger air storage capacity to similar compressed air systems. The CryoBA pack is currently undergoing NIOSH certification testing. Technical challenges associated with liquid breathing air systems: Research done by the BRL has also addressed three major technical challenges involved with the widespread use of liquid breathing air. The BRL developed a storage Dewar fitted with a Cryorefrigerator that has stored liquid air for four months with no appreciable oxygen enrichment due to differential evaporation. Testing of liquid breathing air was material and time intensive. A BRL contract developed a system that only required 1 liter of air and five minutes of time compared to the 10 liters of air and 75 minutes of time required by the old method. The BRL also developed a simple and cost effective method of manufacturing liquid air that joins a liquid oxygen tanker with a liquid nitrogen tanker through an orifice controlled “Y” fitting, mixing the two components, and depositing the mixed breathing air in a separate tanker.
Resumo:
Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) were utilized for the first time to enable important functions, such as (i) field-controlled high-efficacy dissipation-free targeted drug delivery system and on-demand release at the sub-cellular level, (ii) non-invasive energy-efficient stimulation of deep brain tissue at body temperature, and (iii) a high-sensitivity contrasting agent to map the neuronal activity in the brain non-invasively. First, this dissertation specifically focuses on using MENs as energy-efficient and dissipation-free field-controlled nano-vehicle for targeted delivery and on-demand release of a anti-cancer Paclitaxel (Taxol) drug and a anti-HIV AZT 5’-triphosphate (AZTTP) drug from 30-nm MENs (CoFe2O4-BaTiO3) by applying low-energy DC and low-frequency (below 1000 Hz) AC fields to separate the functions of delivery and release, respectively. Second, this dissertation focuses on the use of MENs to non-invasively stimulate the deep brain neuronal activity via application of a low energy and low frequency external magnetic field to activate intrinsic electric dipoles at the cellular level through numerical simulations. Third, this dissertation describes the use of MENs to track the neuronal activities in the brain (non-invasively) using a magnetic resonance and a magnetic nanoparticle imaging by monitoring the changes in the magnetization of the MENs surrounding the neuronal tissue under different states. The potential therapeutic and diagnostic impact of this innovative and novel study is highly significant not only in HIV-AIDS, Cancer, Parkinson’s and Alzheimer’s disease but also in many CNS and other diseases, where the ability to remotely control targeted drug delivery/release, and diagnostics is the key.
Resumo:
Salmonella Typhimurium (S. Typhimurium) is responsible for foodborne zoonotic infections that, in humans, induce self-limiting gastroenteritis. The aim of this study was to evaluate whether the wild-type strain S. Typhimurium (STM14028) is able to exploit inflammation fostering an active infection. Due to the similarity between human and porcine diseases induced by S. Typhimurium, we used piglets as a model for salmonellosis and gastrointestinal research. This study showed that STM14028 is able to efficiently colonize in vitro porcine mono-macrophages and intestinal columnar epithelial (IPEC-J2) cells, and that the colonization significantly increases with LPS pre-treatment. This increase was then reversed by inhibiting the LPS stimulation through LPS antagonist, confirming an active role of LPS stimulation in STM14028-intracellular colonization. Moreover, LPS in vivo treatment increased cytokines blood level and body temperature at 4 h post infection, which is consistent with an acute inflammatory stimulus, capable to influence the colonization of STM14028 in different organs and tissues. The present study proves for the first time that in acute enteric salmonellosis, S. Typhimurium exploits inflammation for its benefit in piglets.
Resumo:
This study sought to a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of − 110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and b) establish whether either protocol was capable of achieving a skin temperature ( < 13 °C) believed to be required for analgesic purposes. After ethics committee approval and written informed consent was obtained, 10 healthy males (26.5 ± 4.9 yr, 183.5 ± 6.0 cm, 90.7 ± 19.9 kg, 26.8 ± 5.0 kg/m 2 , 23.0 ± 9.3 % body fat; mean ± SD) participated in this randomised controlled crossover study. Skin temperature around the patellar region was assessed in both knees via non-contact, infrared thermal imaging and recorded pre-, immediately post-treatment and every 10 min thereafter for 60 min. Compared to baseline, average, minimum and maximum skin temperatures were significantly reduced (p < 0.001) immediately post-treatment and at 10, 20, 30, 40, 50 and 60 min after both cooling modalities. Average and minimum skin temperatures were lower (p < 0.05) immediately after whole body cryotherapy (19.0 ± 0.9 ° C) compared to cold water immersion (20.5 ± 0.6 ° C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p < 0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect.
Resumo:
Standard and routine metabolic rates (SMRs and RMRs, respectively) of juvenile sandbar sharks (Carcharhinus plumbeus) were measured over a range of body sizes (n=34) and temperatures normally associated with western Atlantic coastal nursery areas. The mean SMR Q10 (increase in metabolic rate with temperature) was 2.9 ±0.2. Heart rate decreased with increasing body mass but increased with temperature at a Q10 of 1.8−2.2. Self-paired measures of SMR and RMR were obtained for 15 individuals. Routine metabolic rate averaged 1.8 ±0.1 times the SMR and was not correlated with body mass. Assuming the maximum metabolic rate of sandbar sharks is 1.8−2.75 times the SMR (as is observed in other elasmobranch species), sandbar sharks are using between 34% and 100% of their metabolic scope just to sustain their routine continuous activity. This limitation may help to explain their slow individual and population growth rates, as well as the slow recoveries from overfishing of many shark stocks worl
Resumo:
Flames are often stabilised on bluff-bodies, yet their surface temperatures are rarely measured. This paper presents temperature measurements for the bluff body surface of the Cambridge/Sandia Stratified Swirl Burner. The flame is stabilized by a bluff body, designed to provide a series of turbulent premixed and stratified methane/air flames with a variable degree of swirl and stratification. Recently, modellers have raised concerns about the role of surface temperature on the resulting gas temperatures and the overall heat loss of the burner. Laser-induced phosphorescence is used to measure surface temperatures, with Mg4GeO6F:Mn as the excitation phosphor, creating a spatially resolved temperature map. Results show that the temperature of the bluff body is in the range 550-900 K for different operating conditions. The temperature distribution is strongly correlated with the degree of swirl and local equivalence ratio, reflecting the temperature distribution obtained in the gas phase. The overall heat loss represents only a small fraction (<0.5%) of the total heat load, yet the local surface temperature may affect the local heat transfer and gas temperatures. © 2014 The Combustion Institute.