984 resultados para blood variables
Resumo:
Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.
Resumo:
Background. Patients with type 1 diabetes are at markedly increased risk of vascular complications. In this respect it is noteworthy that hyperglycaemia that is shown to cause endothelial dysfunction, has clearly been shown to be a risk factor for diabetic microvascular disease. However, the role of hyperglycaemia as a predictor of macrovascular disease is not as clear as for microvascular disease, although type 1 diabetes itself increases the risk of cardiovascular disease substantially. Furthermore, it is not known whether it is the short-term or the long-term hyperglycaemia that confers possible risk. In addition, the role of glucose variability as a predictor of complications is to a large extent unexplored. Interestingly, although hyperglycaemia increases the risk of pre-eclampsia in women with type 1 diabetes, it is unclear whether pre-eclampsia, a condition characterized by endothelial dysfunction, is also a risk factor for microvascular complication, diabetic nephropathy. Aims. This doctoral thesis investigated the role of acute hyperglycaemia and glucose variability on arterial stiffness and cardiac ventricular repolarisation in male patients with type 1 diabetes as well as in healthy male volunteers. The thesis also explored whether acute hyperglycaemia leads to an inflammatory response, endothelial dysfunction and oxidative stress. Finally, the role of pre-eclampsia, as a predictor of diabetic nephropathy in type 1 diabetes was examined. Subjects and methods. In order to study glucose variability and the daily glycaemic control, 22 male patients with type 1 diabetes, without any diabetic complications, were monitored for 72-h with a continuous glucose monitoring system. At the end of the 72-h glucose monitoring period a 2-h hyperglycaemic clamp was performed both in the patients with type 1 diabetes and in the 13 healthy age-matched male volunteers. Blood pressure, arterial stiffness and QT time were measured to detect vascular changes during acute hyperglycaemia. Blood samples were drawn at baseline (normoglycaemia) and during acute hyperglycaemia. In another patient sample, women with type 1 diabetes were followed during their pregnancy and restudied eleven years later to elucidate the role of pre-eclampsia and pregnancy-induced hypertension as potential risk factors for diabetic nephropathy. Results and conclusions. Acute hyperglycaemia increased arterial stiffness as well as caused a disturbance in the myocardial ventricular repolarisation, emphasizing the importance of a strict daily glycaemic control in male patients with type 1 diabetes. An inflammatory response was also observed during acute hyperglycaemia. Furthermore, a high mean daily blood glucose but not glucose variability per se is associated with arterial stiffness. While glucose variability in turn correlated with central blood pressure, the results suggest that the glucose metabolism is closely linked to the haemodynamic changes in male patients with uncomplicated type 1 diabetes. Notably, the results are not directly applicable to females. Finally, a history of a pre-eclamptic pregnancy, but not pregnancy-induced hypertension was associated with increased risk of diabetic nephropathy.
Resumo:
Lung cancer is the second most common type of cancer in the world and is the most common cause of cancer-related death in both men and women. Research into causes, prevention and treatment of lung cancer is ongoing and much progress has been made recently in these areas, however survival rates have not significantly improved. Therefore, it is essential to develop biomarkers for early diagnosis of lung cancer, prediction of metastasis and evaluation of treatment efficiency, as well as using these molecules to provide some understanding about tumour biology and translate highly promising findings in basic science research to clinical application. In this investigation, two-dimensional difference gel electrophoresis and mass spectrometry were initially used to analyse conditioned media from a panel of lung cancer and normal bronchial epithelial cell lines. Significant proteins were identified with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), pyruvate kinase M2 isoform (PKM2), Hsc-70 interacting protein and lactate dehydrogenase A (LDHA) selected for analysis in serum from healthy individuals and lung cancer patients. hnRNPA2B1, PKM2 and LDHA were found to be statistically significant in all comparisons. Tissue analysis and knockdown of hnRNPA2B1 using siRNA subsequently demonstrated both the overexpression and potential role for this molecule in lung tumorigenesis. The data presented highlights a number of in vitro derived candidate biomarkers subsequently verified in patient samples and also provides some insight into their roles in the complex intracellular mechanisms associated with tumour progression.
Resumo:
The qualitative and quantitative aspects of the proteins of the silkworm blood were studied by the technique of agarophoresis. The blood of larvae at the final stage revealed the presence of six different protein zones. Considerable differences in the patterns were observed at different stages of growth. There was an increase in the total nitrogen of the blood up to the 5th instar and then came a sudden decrease in the one-day old pupae. Nitrogen concentration was at its highest in egg 1 stage and the electrophoretic pattern closely corresponded to the final larval pattern. Results indicate to the involvement of silk glands in the synthesis and breakdown of a protein designated as protein 5.
Resumo:
Monocarboxylate transporters (MCTs) transport lactate and protons across cell membranes. During intense exercise, lactate and protons accumulate in the exercising muscle and are transported to the plasma. In the horse, MCTs are responsible for the majority of lactate and proton removal from exercising muscle, and are therefore also the main mechanism to hinder the decline in pH in muscle cells. Two isoforms, MCT1 and MCT4, which need an ancillary protein CD147, are expressed in equine muscle. In the horse, as in other species, MCT1 is predominantly expressed in oxidative fibres, where its likely role is to transport lactate into the fibre to be used as a fuel at rest and during light work, and to remove lactate during intensive exercise when anaerobic energy production is needed. The expression of CD147 follows the fibre type distribution of MCT1. These proteins were detected in both the cytoplasm and sarcolemma of muscle cells in the horse breeds studied: Standardbred and Coldblood trotters. In humans, training increases the expression of both MCT1 and MCT4. In this study, the proportion of oxidative fibres in the muscle of Norwegian-Swedish Coldblood trotters increased with training. Simultaneously, the expression of MCT1 and CD147, measured immunohistochemically, seemed to increase more in the cytoplasm of oxidative fibres than in the fast fibre type IIB. Horse MCT4 antibody failed to work in immunohistochemistry. In the future, a quantitative method should be introduced to examine the effect of training on muscle MCT expression in the horse. Lactate can be taken up from plasma by red blood cells (RBCs). In horses, two isoforms, MCT1 and MCT2, and the ancillary protein CD147 are expressed in RBC membranes. The horse is the only species studied in which RBCs have been found to express MCT2, and the physiological role of this protein in RBCs is unknown. The majority of horses express all three proteins, but 10-20% of horses express little or no MCT1 or CD147. This leads to large interindividual variation in the capacity to transport lactate into RBCs. Here, the expression level of MCT1 and CD147 was bimodally distributed in three studied horse breeds: Finnhorse, Standardbred and Thoroughbred. The level of MCT2 expression was distributed unimodally. The expression level of lactate transporters could not be linked to performance markers in Thoroughbred racehorses. In the future, better performance indexes should be developed to better enable the assessment of whether the level of MCT expression affects athletic performance. In human subjects, several mutations in MCT1 have been shown to cause decreased lactate transport activity in muscle and signs of myopathy. In the horse, two amino acid sequence variations, one of which was novel, were detected in MCT1 (V432I and K457Q). The mutations found in horses were in different areas compared to mutations found in humans. One mutation (M125V) was detected in CD147. The mutations found could not be linked with exercise-induced myopathy. MCT4 cDNA was sequenced for the first time in the horse, but no mutations could be detected in this protein.
Resumo:
The paper presents simple graphical procedures for position synthesis of plane linkage mechanisms to generate functions of two independent variables. The procedures are based on point-position reduction and permit synthesis of the linkage to satisfy up to six arbitrarily selected precision positions.
Resumo:
The paper presents simple graphical procedures for the position synthesis of plane linkage mechanisms with sliding inputs and output to generate functions of two independent variables. The procedures are based on point position reduction and permit synthesis of the linkage to satisfy up to five arbitrarily selected precision positions.
Resumo:
In this study, we derive a fast, novel time-domain algorithm to compute the nth-order moment of the power spectral density of the photoelectric current as measured in laser-Doppler flowmetry (LDF). It is well established that in the LDF literature these moments are closely related to fundamental physiological parameters, i.e. concentration of moving erythrocytes and blood flow. In particular, we take advantage of the link between moments in the Fourier domain and fractional derivatives in the temporal domain. Using Parseval's theorem, we establish an exact analytical equivalence between the time-domain expression and the conventional frequency-domain counterpart. Moreover, we demonstrate the appropriateness of estimating the zeroth-, first- and second-order moments using Monte Carlo simulations. Finally, we briefly discuss the feasibility of implementing the proposed algorithm in hardware.
Resumo:
Diabetes is a serious disease during which the body's production and use of insulin is impaired, causing glucose concentration level toincrease in the bloodstream. Regulating blood glucose levels as close to normal as possible, leads to a substantial decrease in long term complications of diabetes. In this paper, an intelligent neural network on-line optimal feedback treatment strategy based on nonlinear optimal control theory is presented for the disease using subcutaneous treatment strategy. A simple mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system is considered based on the Bergman's minimal model. A glucose infusion term representing the effect of glucose intake resulting from a meal is introduced into the model equations. The efficiency of the proposed controllers is shown taking random parameters and random initial conditions in presence of physical disturbances like food intake. A comparison study with linear quadratic regulator theory brings Out the advantages of the nonlinear control synthesis approach. Simulation results show that unlike linear optimal control, the proposed on-line continuous infusion strategy never leads to severe hypoglycemia problems.