686 resultados para blend
Resumo:
Groundwater samples from different aquifers occurring at center/northeast portion of São Paulo State, Brazil, were collected and chemically analyzed. The waters leaching Mesozoic sediments are generally more acid (pH(average) = 5.9) and have lower values for total dissolved solids (TDSaverage = 105 mg/L) than those obtained for waters leaching Paleozoic sediments of Tubarao Group. First-degree trend surfaces revealed that the deeper tubular wells occur towards east/southeast and exploit Paleozoic sediments as well fractured/fissured diabases/basalts, whereas the tubular wells in the west/northwest region are shallower. Piper diagrams indicated that the majority of the waters are a blend of waters from different lithologies. Significant correlations were found among nitrate, chloride and bicarbonate, suggesting the occurrence of some anthropogenic inputs, whereas elevated alpha activity of geogenic Ra-226 indicated the need of a broad radiometric survey in the area.
Resumo:
Understanding the microscopic origin of the dielectric properties of disordered materials has been a challenge for many years, especially in the case of samples with more than one phase. For polar dielectrics, for instance, the Lepienski approach has indicated that the random free energy barrier model of Dyre must be extended. Here we analyse the dielectric properties of a polymer blend made up with the semiconducting poly(o-methoxyaniline) and poly( vinylidene fluoride-trifluorethylene) POMA/P(VDF-TrFE), and of a hybrid composite of POMA/P(VDF-TrFE)/Zn2SiO4:Mn. For the blend, the Lepienski model, which takes into account the rotation or stretching of electric dipoles, provided excellent fitting to the ac impedance data. Because two phases had to be assumed for the hybrid composite, we had to extend the Lepienski model to fit the data, by incorporating a second transport mechanism. The two mechanisms were associated with the electronic transport in the polymeric matrix and with transport at the interfaces between Zn2SiO4: Mn microparticles and the polymeric matrix, with the relative importance of the interfacial component increasing with the percentage of Zn2SiO4: Mn in the composite. The analysis of impedance data at various temperatures led to a prediction of the theoretical model of a change in morphology at 190 +/- 40 K, and this was confirmed experimentally with a differential scanning calorimetry experiment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel epoxy resin system based on a low viscosity Bisphenol-A (DGEBA)/Bisphenol-F (DGEBF) blend has been investigated for use in tight-wound superconducting magnet impregnation. The principle is to decrease the Bisphenol-A resin system viscosity by adding the low viscosity Bisphenol-F resin. The rheological and mechanical properties of the blend system are compared to the pure Bisphenol-A resin and also to the Bisphenol-F resin both cured with acid anhydride. For the vacuum/pressure impregnation, both the pure Bisphenol-F resin system and DGEBA/DGEBF blend system can be applied without S-glass fabric between coil layers due to its higher rigidity at low temperature and good resistance to thermal shock. This resin system have been tested for impregnation of copper and NbTi wire wound coils whilst Bisphenol-A resin system have been used for testing Nb3Sn coil impregnation where S-glass braid is present as wire insulation.
Resumo:
In Brazil there was little research related to Shiitake axenic culture. The aim of this research was to understand the substratum effects in the kinetics of the Shiitake mycelium growth. It was used two Shiitake strains and two different base substrate (eucalyptus sawdust and sugar cane bagasse) varying in three proportions of the supplements. The supplements, a blend of rice and wheat brans, were added in the proportion of 0, 10 and 20% of the base substrate. The experiment was composed of six treatments. The mycelium growth kinetics in volume had no effect relation to the strains and substrate and it followed a mathematical model represented by logarithmic equation. Beta, gamma and delta parameters didn't show any correlation with the growth velocity in volume. The strain L55 was better adapted than L17.
Resumo:
We present atomic force microscopic images of the interphase morphology of vertically segregated thin films spin coated from two-component mixtures of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and polystyrene (PS). We investigate the mechanism leading to the formation of wetting layers and lateral structures during spin coating using different PS molecular weights, solvents and blend compositions. Spinodal decomposition competes with the formation of surface enrichment layers. The spinodal wavelength as a function of PS molecular weight follows a power-law similar to bulk-like spinodal decomposition. Our experimental results indicate that length scales of interface topographical features can be adjusted from the nanometer to micrometer range. The importance of controlled arrangement of semiconducting polymers in thin film geometries for organic optoelectronic device applications is discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We report on light-emitting devices based on a green-phosphor compound (Mn-doped zinc silicate, Zn2SiO4: Mn) dispersed in a conductive polymeric blend (poly-o-methoxyaniline/polyvinylene fluoride, POMA/PVDF-TrFE). The devices exhibited high luminance in the green, good stability and homogeneous brilliance over effective areas up to 5 cm(2). The electroluminescence (EL) spectrum presented essentially the same characteristics as the photoluminescence (PL) and cathodoluminescence spectra, indicating that the light emission originates from decay of the same excited species, regardless of the excitation source. Operating characteristics were analyzed with current density - voltage (J - V) and luminance voltage ( L - V) curves to investigate the nature of the electroluminescence of the active material, which is still not completely understood.
Resumo:
Films containing different volumes of latex of natural rubber (NR) in a fixed mass of poly (vinylidene fluoride) (PVDF) powder were fabricated by compressing under annealing a mixture of both materials without using any solvent. This is an important issue keeping in mind that these films have to be used in the future as biomaterials in different applications once the solvents that are used to dissolve the PVDF become toxic to human. The films with different percentage of latex in PVDF were characterized using microRaman scattering and Fourier transform infrared absorption (FTIR) spectroscopies, thermomechanical techniques using thermogravimetry (TG), differential scanning calorimetry (DSC), dynamical-mechanical analysis (DMA) and scanning electron microscopy (SEM). The results showed that the latex of NR and PVDF do not interact chemically, leading to the formation of a polymeric blend with high thermal stability and mechanical properties suitable for applications involving bone (prostheses, for instance). Besides, the results recorded using the micro-Raman technique revealed that for a fixed amount of PVDF the higher the amount of latex in the blend, the better the miscibility between both materials. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with Europium (III) acetylacetonate [Eu(acac)(3)], have been studied by photoacoustic spectroscopy (PAS) and photoluminescent (PL) spectroscopy. Emission and excitation spectra, excited state decay times, and quantum efficiency have been evaluated as well. PAS studies evidenced chemical interactions between the Europium complex and the PC/PMMA blend, which presented typical percolation threshold behavior regarding the Eu3+ content. PL spectra evidenced the photoluminescence of the Eu3+ incorporated into the blend. Photoluminescence property enhancement was observed for the composite in comparison with the precursor compound. Optimized emission quantum efficiency was observed for the 60/40 blend doped with 2% and 4% Europium (III) acetylacetonate. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Significant progress is being made in the photovoltaic energy conversion using organic semiconducting materials. One of the focuses of attention is the morphology of the donor-acceptor heterojunction at the nanometer scale, to ensure efficient charge generation and loss-free charge transport at the same time. Here, we present a method for the controlled, sequential design of a bilayer polymer cell architecture that consists of a large interface area with connecting paths to the respective electrodes for both materials. We used the surface-directed demixing of a donor conjugated/guest polymer blend during spin coating to produce a nanostructured interface, which was, after removal of the guest with a selective solvent, covered with an acceptor layer. With use of a donor poly(p-phenylenevinylene) derivative and the acceptor C-60 fullerene, this resulted in much-improved device performance, with external power efficiencies more than 3 times higher than those reported for that particular material combination so far.
Resumo:
A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (24, 48, and 96 h) and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (H-1 NMR) spectroscopy, and scanning electron microscopy (SEM). PVA films show a loss of thermal stability due to irradiation. PVA/KLD reveals greater thermal stability than PVA and an increase in thermal stability after irradiation. These results suggest that the incorporation of KLD into PVA provides a gain in thermal and photochemical stability. FTIR, H-1 NMR, DSC, and TG results obtained for the blends suggest that intermolecular interactions between PVA and KLD chains are present. SEM micrographs revealed blend miscibility for a KLD blend content of up to 15 wt%, as observed at magnification of 1000 times. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Natural or synthetic materials may be used to aid tissue repair of fracture or pathologies where there has been a loss of bone mass. Polymeric materials have been widely studied, aiming at their use in orthopaedics and aesthetic plastic surgery. Polymeric biodegradable blends formed from two or more kinds of polymers could present faster degradation rate than homopolymers. The purpose of this work was to compare the biological response of two biomaterials: poly(L-lactic acid)PLLA and poly(L-lactic acid)PLLA/poly(ethylene oxide)PEO blend. Forty four-week-old rats were divided into two groups of 20 animals, of which one group received PLLA and the other PLLA/PEO implants. In each of the animals, one of the biomaterials was implanted in the proximal epiphysis of the right tibia. Each group was divided into subgroups of 5 animals, and sacrificed 2, 4, 8 and 16 weeks after surgery, respectively. Samples were then processed for analysis by light microscopy. Newly formed bone was found around both PLLA and PLLA/PEO implants. PLLA/PEO blends had a porous morphology after immersion in a buffer solution and in vivo implantation. The proportion 50/50 PLLA/PEO blend was adequate to promote this porous morphology, which resulted in gradual bone tissue growth into the implant.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The thermal behavior of blends of poly(vinylidene fluoride), or PVDF, and poly(o-methoxyaniline) doped with toluene sulfonic acid was studied by thermogravimetic analysis, electrical conductivity measurements, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. Blends with thermal and electrical conductivity stabler than the conductive polymer alone were obtained. Nevertheless, degradation occurs after a long period of time (500 h) at high temperatures. The possible association of the conductivity decay with dopant loss, degradation and structural and morphological changes of the blend is discussed. (C) 2000 Elsevier Science Ltd.
Resumo:
Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interracial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engineering applications, but it has processing instability and relatively low notched impact strength. In this study, the acrylonitrile-butadiene-styrene (ABS) triblock copolymer was used as an impact modifier for PA6. Poly(methyl methacrylate-co-maleic anyhydride) (MMA-MA) and poly(methyl methacrylate-co-maleic methacrylate) (MMA-GMA) were used as compatibilizers for this blend. The morphology and impact strength of the blends were evaluated as a function of blend composition and the presence of compatibilizers. The blends compatibilized with maleated copolymer exhibited an impact strength up to 800 J/m and a morphology with ABS domains more efi8ciently dispersed. Moderate amounts of MA functionality in the compatibilizer (∼5%) and small amounts of compatibilizer in the blend (∼5%) appear sufficient to improve the impact properties and ABS dispersion. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87.