999 resultados para black hole physics
Resumo:
Dark gray and black mud turbidites cored on ODP Leg 116 commonly yielded large magnetic susceptibility peaks. What is more, these peaks displayed different shapes suggesting variations in sedimentological processes. Consequently, a detailed study of the magnetic properties of two of these turbidites was undertaken to better understand the source of their unusual magnetism. Physical properties were measured as was the demagnetization behavior of sample natural remanent magnetizations (NRMs). Subsequently, an anhysteretic remanent magnetization (ARM) and saturation isothermal remanent magnetization (SIRM) were imparted to the samples, demagnetized, and various grain size tests based on the behavior of these remanences were applied. Finally, magnetic concentrates from two samples were examined with a scanning electron microscope with the capability to do energy dispersive X-ray (EDX) analysis. The turbidites stand out from surrounding layers because of their high susceptibilities, NRMs, ARMs, SIRMs, and ratios of ARM and SIRM to susceptibility. Their alternating field and thermal demagnetization properties and IRM acquisition curves are consistent with titanomagnetite grains as the primary magnetic mineral with some amount of hematite present. These properties are very similar to those published for samples from the Deccan flood basalts and suggest this formation as a possible source of the magnetic grains. Magnetic granulometry tests implied that the magnetic particles behave dominantly as single-domain and pseudo-single-domain grains. Moreover, they also implied that the large variation in susceptibility observed in the black mud turbidites results from a tenfold increase in the concentration of titanomagnetite grains. Electron microscope, EDX, and SIRM analyses revealed detrital titanomagnetites with typical sizes around 8-10 µm, but as large as 20-25 µm. These are probably the dominant magnetic grains in the black mud turbidites; however, ARM and susceptibility frequency-dependence suggested that there may also be a submicrometer fraction present. Most of the observed titanomagnetite grains are tabular and some display exsolution lamellae, accounting for the pseudo-single-domain behavior despite their moderate sizes. We hypothesize that the magnetic mineral concentration variations are brought about by sedimentological factors. The heavier magnetic minerals may tend to sink to the bottom of a turbidite; however, sometimes turbidite turbulence may act to keep these tabular, medium-size grains in suspension longer than some other larger or more equidimensional grains. Consequently, the susceptibility peak shape may reflect the turbidite current velocities as well as other sedimentological factors.
Resumo:
Site 534 reflects a complex interplay of global, basinal, and local influences on sedimentation during the Callovian and Late Jurassic. Rifting and rapid subsidence of the continental margins of the North Atlantic-Tethys seaway occurred during the late Early Jurassic (Sinemurian-Pliensbachian), but rapid spreading between the North American margin (Blake Spur Ridge and magnetic lineation) and the northwest African margin did not commence until the Bathonian or earliest Callovian. Site 534, drilled on marine magnetic anomaly "M-28" of Bryan et al. (1980), was initially about 150 km from either continental margin. The ?middle Callovian basal sediments are dusky red silty marl. Callovian transgression led to active carbonate platforms on the margin, recorded at Site 534 as a rise in the CCD (carbonate compensation depth), then arrival of lime-rich turbidites from the Blake Plateau platform across the Blake Spur Ridge. The host pelagic sediment is greenish black, organic-rich, radiolarian-rich, silty claystone. Hydrothermal activity on the nearby spreading ridge enriched this lower unit in metals. In the Oxfordian, the input of terrestrial silt rapidly diminished; radiolarians or other bioclasts were not preserved. The dark variegated claystone has fine-grained marl and reddish claystone turbidite beds. The late Callovian-Oxfordian Western Tethys has radiolarian chert deposition, marine hiatuses, or organic-rich sediments. The Kimmeridgian and Tithonian had a stable or receding sea level. Near the end of the Jurassic many of the carbonate platforms of the margins were buried beneath prograding fan or alluvial deposits. Carbonate deposition shifted to the deep sea. Site 534 records the deepening of the CCD and ACD (aragonite compensation depth) during the Kimmeridgian and early Tithonian, then a rise of the ACD in the middle Tithonian. Similar trends occurred throughout the Western Tethys-Atlantic. High nannofossil productivity of the seaway led to deposition of very widespread white micritic limestone in the late Tithonian-Berriasian. The underlying sediment had a slower deposition rate of carbonate, therefore its higher clay and associated Fe content produced a red marl. A short sea-level incursion occurred on the Atlantic margins during the Kimmeridgian and is reflected in the Site 534 greenish gray marl unit by numerous turbidite beds of shallow-water carbonates.
Resumo:
This petrological study of the lower Aptian Oceanic Anoxic Event (OAE1a) focused on the nature of the organic-rich interval as well as the tuffaceous units above and below it. The volcaniclastic debris deposited just prior to the OAE1a is consistent with reactivation of volcanic centers across the Shatsky Rise, concurrent with volcanism on the Ontong Java Plateau. This reactivation may have been responsible for the sub-OAE1a unconformity. Soon after this volcanic pulse, anomalous amounts of organic matter accumulated on the rise, forming a black shale horizon. The complex textures in the organic-rich intervals suggest a history of periodic anoxia, overprinted by bioturbation. Components include pellets, radiolarians, and fish debris. The presence of carbonate-cemented radiolarite under the OAE1a intervals suggests that there has been large-scale remobilization of carbonate in the system, which in turn may explain the absence of calcareous microfossils in the section. The volcanic debris in the overlying tuffaceous interval differs in that it is significantly epiclastic and glauconitic. It was likely derived from an emergent volcanic edifice.
Resumo:
Organic matter contents of black shales from the Cretaceous Hatteras and Blake-Bahama formations have been compared to those from surrounding organic-poor strata using C/N ratios, d13C values, and distributions of extractable and nonsolvent-extractable, long-chain hydrocarbons, acids, and alcohols. The proportion of marine and land-derived organic matter varies considerably among all samples, although terrigenous components generally dominate. Most black shales are hydrocarbon-poor relative to their organic-carbon concentrations. Deposition of the black shales in Hole 603B evidently occurred through turbiditic relocation from shallower landward sites and rapid reburial at this outer continental rise location under generally oxygenated bottom-water conditions.
Resumo:
Date-32 is a fast and easily used computer program developed to date Quaternary deep-sea cores by associating variations in the earth's orbit with recurring oscillations in core properties, such as carbonate content or isotope composition. Starting with known top and bottom dates, distortions in the periodicities of the core properties due to varying sedimentation rates are realigned by fast Fourier analysis so as to maximise the spectral energy density at the orbital frequencies. This allows age interpolation to all parts of the core to an accuracy of 10 kyrs, or about 1.5% of the record duration for a typical Brunhes sequence. The influence of astronomical forcing is examined and the method is applied to provide preliminary dates in a high-resolution Brunhes record from DSDP Site 594 off southeastern New Zealand.
Resumo:
Late Jurassic-early Cretaceous black shales and an overlying sequence of Albian-Campanian zeolitic claystones from the Falkland Plateau (DSDP/IPOD Leg 71, Site 511) were analyzed for tetrapyrrole pigment type and abundance. The "black shale" sequence was found to be rich in DPEP-series dominated free-base, nickel (Ni) and, to a lesser extent, vanadyl (V = 0) porphyrins. A low level of organic maturity (i.e. precatagenesis) is indicated for these strata as nickel chelation by free-base porphyrins is only 50-75% complete, proceeding down-hole to 627 meters sub-bottom. Electronic and mass spectral data reveal that the proposed benzo-DPEP (BD) and tetrahydrobenzo-DPEP (THBD) series are present in the free-base and Ni species, as well as the more usual occurrence in V = 0 porphyrin arrays. Highly reducing conditions are suggested by an abundance of the PAH perylene, substantial amounts of the THBD/BD series and a redox equilibrium between free-base DPEP and 7,8-dihydro-DPEP series, which exist in a 7:1 molar ratio. The Albian-Campanian claystone strata were found to be tetrapyrrolepoor, and those pigments present were typed as Cu/Ni highly dealkylated (C26 max.) etioporphyrins, thought to be derived via redeposition and oxidation of terrestrial organic matter (OM). Results from the present study are correlated to our past analyses of Jurassic-Cretaceous sediments from Atlantic margins in an effort to relate tetrapyrrole quality and quantity to basin evolution and OM sources in the proto-Atlantic.
Resumo:
Mid-ocean-ridge basalts recovered from Hole 1256D during Ocean Drilling Program Leg 206 exhibit the effects of various low-temperature (<100°C) alteration processes, including the formation of black or dark green alteration halos adjacent to celadonite-bearing veins. In several samples from the deepest basalts, a Ti-rich hydrogarnet occurs. To our knowledge, such a mineral has never been reported in the oceanic crust. This report presents a brief description and microprobe analyses of this hydrogarnet and associated celadonite. More detailed characterizations of this mineral and a description of its relationship to other secondary minerals will be undertaken in a future study, in an attempt to determine the mineral's formation conditions and its place in the general alteration history of the Hole 1256D basalts.