998 resultados para bismuth layer
Resumo:
Boundary layer transition induced by the wake of a circular cylinder in the free stream has been investigated using the particle image velocimetry technique. Some differences between simulation and experimental studies have been reported in the literature, and these have motivated the present study. The appearance of spanwise vortices in the early stage is further confirmed here. Lambda spanwise vortex appears to evolve into a Lambda/hairpin vortex; the flow statistics also confirm such vortices. With increasing Reynolds number, based on the cylinder diameter, and with decreasing cylinder height from the plate, the physical size of these hairpin-like structures is found to decrease. Some mean flow characteristics, including the streamwise growth of the disturbance energy, in a wake-induced transition resemble those in bypass transition induced by free stream turbulence. Streamwise velocity streaks that are eventually generated in the late stage often undergo sinuous-type oscillations. Similar to other transitional flows, an inclined shear layer in the wall-normal plane is often seen to oscillate and shed vortices. The normalized shedding frequency of these vortices, estimated from the spatial spacing and the convection velocity of these vortices, is found to be independent of the Reynolds number, similar to that in ribbon-induced transition. Although the nature of free stream disturbance in a wake-induced transition and that in a bypass transition are different, the late-stage features including the flow breakdown characteristics of these two transitions appear to be similar.
Resumo:
The encapsulation of probiotic Lactobacillus acidophilus through layer-by-layer self-assembly of polyelectrolytes (PE) chitosan (CHI) and carboxymethyl cellulose (CMC) has been investigated,to enhance its survival m adverse conditions encountered in the GI tract The survival of encapsulated cells in simulated gastric (SGF) and intestinal fluids (SIF) is significant when compared to nonencapsulated cells On sequential exposure to SGF and SIF fox 120 nun, almost complete death of free cells is observed However, for cells coated with three nanolayers of PEs (CHI/CMC/CHI) about 33 log % of the cells (6 log cfu/500 mg) survived under the same conditions The enhanced survival rate of encapsulated L acidophilus can be attributed to the impermeability of polyelectrolyte nanolayers to large enzyme molecules like pepsin, and pancreatin that cause proteolysis and to the stability of the polyelectrolyte nanolayers in gastric and intestinal pH The PE coating also serves to reduce viability losses during freezing and freeze- drying About 73 and 92 log % of uncoated and coated cells survived after freeze:drying, and the losses occurring between freezing and freeze-drying were found to be lower for coated cells
Resumo:
Liquid water is known to exhibit remarkable thermodynamic and dynamic anomalies, ranging from solvation properties in supercritical state to an apparent divergence of the linear response functions at a low temperature. Anomalies in various dynamic properties of water have also been observed in the hydration layer of proteins, DNA grooves and inside the nanocavity, such as reverse micelles and nanotubes. Here we report studies on the molecular origin of these anomalies in supercooled water, in the grooves of DNA double helix and reverse micelles. The anomalies have been discussed in terms of growing correlation length and intermittent population fluctuation of 4- and 5-coordinated species. We establish correlation between thermodynamic response functions and mean squared species number fluctuation. Lifetime analysis of 4- and 5-coordinated species reveals interesting differences between the role of the two species in supercooled and constrained water. The nature and manifestations of the apparent and much discussed liquid-liquid transition under confinement are found to be markedly different from that in the bulk. We find an interesting `faster than bulk' relaxation in reverse micelles which we attribute to frustration effects created by competition between the correlations imposed by surface interactions and that imposed by hydrogen bond network of water.
Resumo:
In the present investigation, various kinds of textures, namely, unidirectional, 8-ground, and random were attained on the die surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Then pins made of Al-4Mg alloys were slid against steel plates at various numbers of cycles, namely, 1, 3, 5, 10 and 20 using pin-on-plate reciprocating sliding tester. Tests were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. A constant normal load of 35 N was applied in the tests. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plates were measured using an optical profilometer. In the experiments, it was observed that the coefficient of friction and formation of the transfer layer depend on the die surface textures under both dry and lubricated conditions. More specifically, the coefficient of friction decreases for unidirectional and 8-ground surfaces while for random surfaces it increases with number of cycles. However, the coefficient of friction is highest for the sliding perpendicular to the unidirectional textures and least for the random textures under both dry and lubricated conditions. The difference in friction values between these two surfaces decreases with increasing number of cycles. The variation in the coefficient of friction under both dry and lubrication conditions is attributed to the change in texture of the surfaces during sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present investigation, various kinds of surface textures were attained on the steel plates. Roughness of the textures was varied using various grinding or polishing methods. The surface textures were characterized in terms of roughness parameters using an optical profilometer. Then experiments were conducted using an inclined pin-on-plate sliding apparatus to identify the role of surface texture and its roughness parameters on coefficient of friction and transfer layer formation. In the experiments, a soft polymer (polypropylene) was used for the pin and hardened steel was used for the plate. Experiments were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. The normal load was varied from 1 to 120 N during the tests. The morphologies of the worn surfaces of the pins and the formation of a transfer layer on the steel plate surfaces were observed using a scanning electron microscope. Based on the experimental results, it was observed that the transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, were controlled by the surface texture of the harder mating surfaces and were less dependent of surface roughness (R(a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. Among the various surface roughness parameters studied, the mean slope of the profile, Delta(a), was found to most accurately characterize variations in the friction and wear behavior. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
When radiation of sufficiently high energy is incident on the surface of a semiconductor photocathode, electrons are excited from the valence band to the conduction band and these may contribute to the photocurrent. The photocurrent in a single-layer cathode is found to be small, because of collisions within the cathode material, the electron affinity condition, etc. It is observed that when a thin layer of n-type cesium antimonide (Cs3Sb) is deposited over a p-type layer of sodium potassium antimonide (Na2KSb), there occurs a sharp rise in the photocurrent. The causes for the dramatic increase in the photocurrent obtainable from a sodium potassium antimonide cathode, by depositing a thin layer of cesium antimonide are analyzed in this article. It has been shown that the interface between sodium potassium antimonide and cesium antimonide can result in lowering of the electron affinity to a level below the bottom of the conduction band of sodium potassium antimonide. The drift field that arises at the heterointerface enables the electrons to reach the surface, leading to the emission of almost all the photogenerated electrons within the cathode. The processes involved in photoemission from such a double-layer cathode are examined from a theoretical point of view. The spectral response of the two-layer cathode is also found to be better than that of a single-layer cathode.
Resumo:
The stimulated emission cross section σp for the 1060 nm transition of Nd3+ in lead borate and bismuth borate glasses has been determined from fluorescence measurements. The compositional dependence of σp, which has been evaluated using radiative transition probability, refractive index of the host glass, effective fluorescence linewidth, and position of the band, with PbO/Bi2O3 content is investigated. The σp values of the 1060 nm band of Nd3+ for lead borate and bismuth borate glasses are found to be in the range 2.6–5.7×10−20 cm2 at 298 K and 3.0–6.3×10−20 cm2 at 4.2 K. The σp values are comparatively large suggesting the possible utilization of these materials in laser applications.
Resumo:
A large reduction in the leakage current behavior in (Ba, Sr)TiO3 (BST) thin films was observed by graded-layer donor doping. The graded doping was achieved by introducing La-doped BST layers in the grown BST films. The films showed a large decrease (about six orders of magnitude) in the leakage current in comparison to undoped films at an electric field of 100 kV/cm. The large decrease in leakage current was attributed to the formation of highly resistive layers, originating from compensating defect chemistry involved for La-doped films grown in oxidizing environment. Temperature-dependent leakage-current behavior was studied to investigate the conduction mechanism and explanations of the results were sought from Poole–Frenkel conduction mechanism.
Resumo:
The 2p 6d feature in the Bi L3 spectra has different energies in the semiconducting (0.0≤x<0.7) and the superconducting (x=0.75) compositions of BaBi1−xPbxO3. The Bi 4f core level spectrum shows distinct features ascribable to Bi III and Bi V in BaBiO3 and in the semiconducting compositions; the width of the 4f peaks is also considerably larger in these compositions compared to that in BaBi0.25Pb0.75O3, which shows a single sharp Bi 4f feature.
Resumo:
In order to understand the influence of ductile metal interlayer on the overall deformation behavior of metal/nitride multilayer, different configurations of metal and nitride layers were deposited and tested under indentation loading. To provide insight into the trends in deformation with multilayer spacings, an FEM model with elastic-perfect plastic metal layers alternate with an elastic nitride on top of an elastic-plastic substrate. The strong strain mismatch between the metal and nitride layers significantly alters the stress field under contact loading leading to micro-cracking in the nitride, large tensile stresses immediately below the contact, and a transition from columnar sliding in thin metal films to a more uniform bending and microcracking in thicker coatings.