749 resultados para biopharmaceutical classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manual provides a set of procedural rules and regulations for use in functionally classifying all roads and streets in Iowa according to the character of service they are intended to provide. Functional classification is a requirement of the 1973 Code of Iowa (Chapter 306) as amended by Senate File 1062 enacted by the 2nd session of the 65th General Assembly of Iowa. Functional classification is defined as the grouping of roads and streets into systems according to the character of service they will be expected to provide, and the assignment of jurisdiction over each class to the governmental unit having primary interest in each type of service. Stated objectives of the legislation are: "Functional classification will serve the legislator by providing an equitable basis for determination of proper source of tax support and providing for the assignment of financial resources to the governmental unit having responsibility for each class of service. Functional classification promotes the ability of the administrator to effectively prepare and carry out long range programs which reflect the transportation needs of the public." All roads and streets in legal existence will be classified. Instructions are also included in this manual for a continuous reporting to the Highway Commission of changes in classification and/or jurisdiction resulting from new construction, corporation line changes, relocations, and deletions. This continuous updating of records is absolutely essential for modern day transportation planning as it is the only possible way to monitor the status of existing road systems, and consequently determine adequacy and needs with accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to assess and characterize two clones, 169 and 685, of Cabernet Sauvignon grapes and to evaluate the wine produced from these grapes. The experiment was carried out in São Joaquim, SC, Brazil, during the 2009 harvest season. During grape ripening, the evolution of physical-chemical properties, phenolic compounds, organic acids, and anthocyanins was evaluated. During grape harvest, yield components were determined for each clone. Individual and total phenolics, individual and total anthocyanins, and antioxidant activity were evaluated for wine. The clones were also assessed regarding the duration of their phenological cycle. During ripening, the evolution of phenolic compounds and of physical-chemical parameters was similar for both clones; however, during harvest, significant differences were observed regarding yield, number of bunches per plant and berries per bunch, leaf area, and organic acid, polyphenol, and anthocyanin content. The wines produced from these clones showed significant differences regarding chemical composition. The clones showed similar phenological cycle and responses to bioclimatic parameters. Principal component analysis shows that clone 685 is strongly correlated with color characteristics, mainly monomeric anthocyanins, while clone 169 is correlated with individual phenolic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a new one-class classification ensemble strategy called approximate polytope ensemble is presented. The main contribution of the paper is threefold. First, the geometrical concept of convex hull is used to define the boundary of the target class defining the problem. Expansions and contractions of this geometrical structure are introduced in order to avoid over-fitting. Second, the decision whether a point belongs to the convex hull model in high dimensional spaces is approximated by means of random projections and an ensemble decision process. Finally, a tiling strategy is proposed in order to model non-convex structures. Experimental results show that the proposed strategy is significantly better than state of the art one-class classification methods on over 200 datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the biochemical composition of six berry types belonging to Fragaria, Rubus, Vaccinium and Ribes genus. Fruit samples were collected in triplicate (50 fruit each) from 18 different species or cultivars of the mentioned genera, during three years (2008 to 2010). Content of individual sugars, organic acids, flavonols, and phenolic acids were determined by high performance liquid chromatography (HPLC) analysis, while total phenolics (TPC) and total antioxidant capacity (TAC), by using spectrophotometry. Principal component analysis (PCA) and hierarchical cluster analysis (CA) were performed to evaluate the differences in fruit biochemical profile. The highest contents of bioactive components were found in Ribes nigrum and in Fragaria vesca, Rubus plicatus, and Vaccinium myrtillus. PCA and CA were able to partially discriminate between berries on the basis of their biochemical composition. Individual and total sugars, myricetin, ellagic acid, TPC and TAC showed the highest impact on biochemical composition of the berry fruits. CA separated blackberry, raspberry, and blueberry as isolate groups, while classification of strawberry, black and red currant in a specific group has not occurred. There is a large variability both between and within the different types of berries. Metabolite fingerprinting of the evaluated berries showed unique biochemical profiles and specific combination of bioactive compound contents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study was todo a statistical analysis of ecological type from optical satellite data, using Tipping's sparse Bayesian algorithm. This thesis uses "the Relevence Vector Machine" algorithm in ecological classification betweenforestland and wetland. Further this bi-classification technique was used to do classification of many other different species of trees and produces hierarchical classification of entire subclasses given as a target class. Also, we carried out an attempt to use airborne image of same forest area. Combining it with image analysis, using different image processing operation, we tried to extract good features and later used them to perform classification of forestland and wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mature T-cell and T/NK-cell neoplasms are both uncommon and heterogeneous, among the broad category of non-Hodgkin's lymphomas. Due to the lack of specific genetic alterations in the vast majority of cases, most currently defined entities show overlapping morphologic and immunophenotypic features and therefore pose a challenge to the diagnostic pathologist. The goal of the symposium is to address current criteria for the recognition of specific subtypes of T-cell lymphoma, and to highlight new data regarding emerging immunophenotypic or molecular markers. This activity has been designed to meet the needs of practicing pathologists, and residents and fellows enrolled in training programs in anatomic and clinical pathology. It should be a particular benefit to those with an interest in hematopathology. Upon completion of this activity, participants should be better able to: -To be able to state the basis for the classification of mature T-cell malignancies involving nodal and extranodal sites. -To recognize and accurately diagnose the various subtypes of nodal and extranodal peripheral T-cell lymphomas. -To utilize immunohistochemical and molecular tests to characterize atypical T-cell proliferations. -To recognize and accurately diagnose T-cell lymphoproliferative lesions involving the skin and gastrointestinal tract, and be able to provide guidance regarding their clinical aggressiveness and management -To be able to utilize flow cytometric data to identify diverse functional T-cell subsets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luokittelujärjestelmää suunniteltaessa tarkoituksena on rakentaa systeemi, joka pystyy ratkaisemaan mahdollisimman tarkasti tutkittavan ongelma-alueen. Hahmontunnistuksessa tunnistusjärjestelmän ydin on luokitin. Luokittelun sovellusaluekenttä on varsin laaja. Luokitinta tarvitaan mm. hahmontunnistusjärjestelmissä, joista kuvankäsittely toimii hyvänä esimerkkinä. Myös lääketieteen parissa tarkkaa luokittelua tarvitaan paljon. Esimerkiksi potilaan oireiden diagnosointiin tarvitaan luokitin, joka pystyy mittaustuloksista päättelemään mahdollisimman tarkasti, onko potilaalla kyseinen oire vai ei. Väitöskirjassa on tehty similaarisuusmittoihin perustuva luokitin ja sen toimintaa on tarkasteltu mm. lääketieteen paristatulevilla data-aineistoilla, joissa luokittelutehtävänä on tunnistaa potilaan oireen laatu. Väitöskirjassa esitetyn luokittimen etuna on sen yksinkertainen rakenne, josta johtuen se on helppo tehdä sekä ymmärtää. Toinen etu on luokittimentarkkuus. Luokitin saadaan luokittelemaan useita eri ongelmia hyvin tarkasti. Tämä on tärkeää varsinkin lääketieteen parissa, missä jo pieni tarkkuuden parannus luokittelutuloksessa on erittäin tärkeää. Väitöskirjassa ontutkittu useita eri mittoja, joilla voidaan mitata samankaltaisuutta. Mitoille löytyy myös useita parametreja, joille voidaan etsiä juuri kyseiseen luokitteluongelmaan sopivat arvot. Tämä parametrien optimointi ongelma-alueeseen sopivaksi voidaan suorittaa mm. evoluutionääri- algoritmeja käyttäen. Kyseisessä työssä tähän on käytetty geneettistä algoritmia ja differentiaali-evoluutioalgoritmia. Luokittimen etuna on sen joustavuus. Ongelma-alueelle on helppo vaihtaa similaarisuusmitta, jos kyseinen mitta ei ole sopiva tutkittavaan ongelma-alueeseen. Myös eri mittojen parametrien optimointi voi parantaa tuloksia huomattavasti. Kun käytetään eri esikäsittelymenetelmiä ennen luokittelua, tuloksia pystytään parantamaan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Development of three classification trees (CT) based on the CART (Classification and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies for the calculation of probability of hospital mortality; the comparison of the results with the APACHE II, SAPS II and MPM II-24 scores, and with a model based on multiple logistic regression (LR). Methods: Retrospective study of 2864 patients. Random partition (70:30) into a Development Set (DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%). Results: CTs are produced with a different selection of variables and decision rules: CART (5 variables and 8 decision rules), CHAID (7 variables and 15 rules) and C4.5 (6 variables and 10 rules). The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT: CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69- 75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART (1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)). Conclusion: With different methodologies of CTs, trees are generated with different selection of variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital mortality. The CTs should be taken into account for the classification of the prognosis of critically ill patients.