989 resultados para biomass of tree components
Resumo:
The purpose of the present study was to explore the composition and variation of the pico-, nano- and micro-plankton communities in Norwegian coastal waters and Skagerrak, and the co-occurrence of bacteria and viruses. Samples were collected along three cruise transects from Jaeren, Lista and Oksoy on the south coast of Norway and into the North Sea and Skagerrak. We also followed a drifting buoy for 55 h in Skagerrak in order to observe diel variations. Satellite ocean color images (SeaWiFS) of the chlorophyll a (chl a) distribution compared favorably to in situ measurements in open waters, while closer to the shore remote sensing chl a data was overestimated compared to the in situ data. Using light microscopy, we identified 49 micro- and 15 nanoplankton sized phototrophic forms as well as 40 micro- and 12 nanoplankton sized heterotrophic forms. The only picoeukaryote (0.2-2.0 µm) we identified was Resultor micron (Pedinophyceae). Along the transects a significant variation in the distribution and abundance of different plankton forms were observed, with Synechococcus spp and autotrophic picoeukaryotes as the most notable examples. There was no correlation between viruses and chl a, but between viruses and bacteria, and between viruses and some of the phytoplankton groups, especially the picoeukaryotes. Moreover, there was a negative correlation between nutrients and small viruses (Low Fluorescent Viruses) but a positive correlation between nutrients and large viruses (High Fluorescent Viruses). The abundance of autotrophic picoplankton, bacteria and viruses showed a diel variation in surface waters with higher values around noon and late at night and lower values in the evening. Synechococcus spp were found at 20 m depth 25-45 nautical miles from shore apparently forming a bloom that stretched out for more than 100 nautical miles from Skagerrak and up the south west coast of Norway. The different methods used for assessing abundance, distribution and diversity of microorganisms yielded complementary information about the plankton community. Flow cytometry enabled us to map the distribution of the smaller phytoplankton forms, bacteria and viruses in more detail than has been possible before but detection and quantification of specific forms (genus or species) still requires taxonomic skills, molecular analysis or both.
Resumo:
Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short-lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2-10 °C for 2-14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week-long extreme winter warming events - using infrared heating lamps and soil warming cables - for 3 consecutive years in a sub-Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis-idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11-75% and 52-95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis-idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long-term summer warming simulations and the 'greening' seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.
Resumo:
The SESAME dataset contains mesozooplankton data collected during April 2008 in the North-West Black Sea (between 44°46' N and 42°29'N latitude and 28°64'E and 30°59'E longitude). Mesozooplankton sampling was undertaken at 9 stations where samples were collected using a Nansen closing net in the 0-10, 10-25, 25-50, 50-100, 100-150, 150-180 m layer. The dataset includes 28 samples analysed for mesozooplankton species composition, species abundance and total biomass. The Taxon-specific mesozooplankton abundance sample or aliquots were analyzed under the binocular microscope. Taxonomic identification was done according to Morduhai-Boltovskii et al. 1968. Total biomass was estimated using a tabel with wet weight for each species an stage (Petipa method).
Resumo:
Biomass of seston in the surface layers of coastal waters off Namibia reaches 1 g/m**2 and decreases with distance from the shore. Two regions of high seston biomass, one northern and one southern, are distinguished. A subsurface maximum of seston biomass, presumably coinciding with the stream of compensating countercurrent, is identified in the 200-500 m layer. Similar vertical distribution of plankton is known in upwelling areas of the eastern shores of the Atlantic and Pacific Oceans and in several other ocean areas, such as the area of the Kuril-Kamchatka Trench. This fact probably indicates that life cycles of pelagic animal forms of various taxonomic groups that inhabit them and phases of their ontogenic migrations are similar.