929 resultados para arc welding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to accurately predict residual stresses and resultant distortions is a key product from process assembly simulations. Assembly processes necessarily consider large structural components potentially making simulations computationally expensive. The objective herein is to develop greater understanding of the influence of friction stir welding process idealization on the prediction of residual stress and distortion and thus determine the minimum required modeling fidelity for future airframe assembly simulations. The combined computational and experimental results highlight the importance of accurately representing the welding forging force and process speed. In addition, the results emphasize that increased CPU simulation times are associated with representing the tool torque, while there is potentially only local increase in prediction fidelity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to determine the out-of-field survival of cells irradiated with either the primary field or scattered radiation in the presence and absence of intercellular communication following delivery of conformal, IMRT and VMAT treatment plans. Single beam, conformal, IMRT and VMAT plans were created to deliver 3 Gy to half the area of a T80 flask containing either DU-145 or AGO-1522 cells allowing intercellular communication between the in-and out-of-field cell populations. The same plans were delivered to a similar custom made phantom used to hold two T25 culture flasks, one flask in-field and one out-of-field to allow comparison of cell survival responses when intercellular communication is physically inhibited. Plans were created for the delivery of 8 Gy to the more radio-resistant DU-145 cells only in the presence and absence of intercellular communication. Cell survival was determined by clonogenic assay. In both cell lines, the out-of-field survival was not statistically different between delivery techniques for either cell line or dose. There was however, a statistically significant difference between survival out-of-field when intercellular communication was intact (single T80 culture flask) or inhibited (multiple T25 culture flasks) to in-field for all plans. No statistically significant difference was observed in-field with or without cellular communication to out-of-field for all plans. These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields when cellular communication between differentially irradiated cell populations is present. This data is further evidence that refinement of existing radiobiological models to include indirect cell killing effects is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The arc-length method has become a widely established solution technique for studying nonlinear structural behavior. By augmenting the set of nonlinear equilibrium equations with a constraint equation, which is a function of both the displacements and load increment, it is capable of traversing limit points. Numerous investigations have shown that highly nonlinear behavior such as sharp "snap-backs" can still lead to numerical difficulties. Two practical examples are presented to assess the effectiveness of this solution technique in capturing secondary instabilities in postbuckling structures, which present themselves as abrupt mode jumps. Although the first example poses no special difficulties, in the second case the nonlinear procedure fails to converge. An improvement to the method's formulation is suggested, which accounts for the residual forces that are usually neglected, when proceeding to the next increment once convergence is reached on the current increment. The choice of a correct load increment at the first iteration, within a predictor-corrector scheme, is central to the method's effectiveness. Current strategies for a choice of this load increment are discussed and are shown to be no longer consistent with the modified formulation; therefore, a new approach is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, two L27 Taguchi experiments were carried out to study the effect of fibre laser welding parameters and their interactions upon the weld bead aspect ratio of nickel–titanium thin foil. The optimum parameters to produce full penetrated weld with the largest aspect ratio and desirable microstructure were successfully obtained by the Taguchi experimental design. The corrosion property of the optimized NiTi weld in Hank’s solution at 37.5 °C was studied and compared with the as-received NiTi. To improve the corrosion properties of the weld, the effect of post-weld-heat-treatments ranging from 573 to 1173 K was investigated. The corrosion properties, surface morphology, microstructure and Ti/Ni ratio of the heat-treated NiTi weld were analysed. It was found that a post-weld heat treatment at 573 K for 1 h provided the best pitting corrosion resistance at the weld zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the application of the Taguchi experimental design approach in optimizing the key process parameters for micro-welding of thin AISI 316L foil using the 100W CW fibre laser. A L16 Taguchi experiment was conducted to systematically understand how the power, scanning velocity, focus position, gas flow rate and type of shielding gas affect the bead dimensions. The welds produced in the L16 Taguchi experiment was mainly of austenite cellular-dendrite structure with an average grain size of 5µm. An exact penetration weld with the largest penetration to fusion width ratio was obtained. Among those process parameters, the interaction between power and scanning velocity presented the strongest effect to the penetration to fusion width ratio and the power was found to be the predominantly important factor that drives the interaction with other factors to appreciably affect the bead dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A L27 Taguchi experiment was done to investigate the effect of laser power, welding time, laser mode (CW and two pulsed modes), focus position, and their possible interactions on the weld-bead aspect ratio of laser-welded NiTi wires by using a 100W fibre laser. The optimized parameter setting to produce the full penetrated weldment with minimum welding defects is successfully determined in the Taguchi experiment. The laser mode is found to be the most important parameter that directly controls the weld-bead aspect ratio. The focus position is the secondly important parameter for the laser welding of NiTi wires. Strong interaction between the power and focus position is found in the Taguchi experiment. The optimized weldment produced by the Taguchi experiment is mainly of columnar dendritic structure in the weld zone (WZ) with the size of 1-3µm, while the HAZ exhibits equiaxed grain structure with the size of 5-10µm. The Vickers micro-hardness test indicted that the WZ and HAZ in the weldment are softened to certain extends after fibre laser welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding process is a rapid manufacturing process used to weld thin layers of metal at low temperatures and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, a very first attempt has been made to simulate the ultrasonic welding of metals by taking into account both of these effects (surface and volume). A phenomenological material model has been proposed which incorporates these two effects (i.e. surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects a friction law with variable coefficient of friction dependent upon contact pressure, slip, temperature and number of cycles has been derived from experimental friction tests. Thermomechanical analyses of ultrasonic welding of aluminium alloy have been performed. The effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic vibration, and velocity of welding sonotrode on the friction work at the weld interface are being analyzed. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented showing a good agreement. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement. Copyright © 2009 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, a preliminary study was done to find out the initial parameter window to obtain the full-penetrated NiTi weldment. A L27 Taguchi experiment was then carried out to statistically study the effects of the welding parameters and their possible interactions on the weld bead aspect ratio (or penetration over fuse-zone width ratio), and to determine the optimized parameter settings to produce the full-penetrated weldment with desirable aspect ratio. From the statistical results in the Taguchi experiment, the laser mode was found to be the most important factor that substantially affects the aspect ratio. Strong interaction between the power and focus position was found in the Taguchi experiment. The optimized weldment was mainly of columnar dendritic structure in the weld zone (WZ), while the HAZ exhibited equiaxed grain structure. The XRD and DSC results showed that the WZ remained the B2 austenite structure without any precipitates, but with a significant decrease of phase transformation temperatures. The results in the micro-hardness and tensile tests indicated that the mechanical properties of NiTi were decreased to a certain extent after fibre laser welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this work was to determine if volumetric modulated arc therapy (VMAT) plans, created for constant dose-rate (cdrVMAT) delivery are a viable alternative to step and shoot five-field intensity modulated radiation therapy (IMRT). Materials and methods: The cdrVMAT plans, inverse planned on a treatment planning system with no solution to account for couch top or rails, were created for delivery on a linear accelerator with no variable dose rate control system. A series of five-field IMRT and cdrVMAT plans were created using dual partial arcs (gantry rotating between 260° and 100°) with 4° control points for ten prostate patients with the average rectal constraint incrementally increased. Pareto fronts were compared for the planning target volume homogeneity and average rectal dose between the two techniques for each patient. Also investigated were tumour control probability and normal tissue complication probability values for each technique. The delivery parameters [monitor units (MU) and time] and delivery accuracy of the IMRT and VMAT plans were also compared. Results: Pareto fronts showed that the dual partial arc plans were superior to the five-field IMRT plans, particularly for the clinically acceptable plans where average rectal doses were less for rotational plans (p = 0·009) with no statistical difference in target homogeneity. The cdrVMAT plans had significantly more MU (p = 0·005) but the average delivery time was significantly less than the IMRT plans by 42%. All clinically acceptable cdrVMAT plans were accurate in their delivery (gamma 99·2 ± 1·1%, 3%3 mm criteria). Conclusions Accurate delivery of dual partial arc cdrVMAT avoiding the couch top and rails has been demonstrated.