895 resultados para arbitrary sharing configurations
Resumo:
Magnetic shielding efficiency was measured on high- Tc superconducting hollow cylinders subjected to either an axial or a transverse magnetic field in a large range of field sweep rates, dBapp/dt. The behaviour of the superconductor was modelled in order to reproduce the main features of the field penetration curves by using a minimum number of free parameters suitable for both magnetic field orientations. The field penetration measurements were carried out on Pb-doped Bi-2223 tubes at 77K by applying linearly increasing magnetic fields with a constant sweep rate ranging between 10νTs-1 and 10mTs-1 for both directions of the applied magnetic field. The experimental curves of the internal field versus the applied field, Bin(Bapp), show that, at a given sweep rate, the magnetic field for which the penetration occurs, Blim, is lower for the transverse configuration than for the axial configuration. A power law dependence with large exponent, n′, is found between Blim and dBapp/dt. The values of n′ are nearly the same for both configurations. We show that the main features of the curves B in(Bapp) can be reproduced using a simple 2D model, based on the method of Brandt, involving a E(J) power law with an n-exponent and a field-dependent critical current density, Jc(B), (following the Kim model: Jc = Jc0(1+B/B1)-1). In particular, a linear relationship between the measured n′-exponents and the n-exponent of the E(J) power law is suggested by taking into account the field dependence of the critical current density. Differences between the axial and the transverse shielding properties can be simply attributed to demagnetizing fields. © 2009 IOP Publishing Ltd.
Resumo:
We present a moving mesh method suitable for solving two-dimensional and axisymmetric three-liquid flows with triple junction points. This method employs a body-fitted unstructured mesh where the interfaces between liquids are lines of the mesh system, and the triple junction points (if exist) are mesh nodes. To enhance the accuracy and the efficiency of the method, the mesh is constantly adapted to the evolution of the interfaces by refining and coarsening the mesh locally; dynamic boundary conditions on interfaces, in particular the triple points, are therefore incorporated naturally and accurately in a Finite- Element formulation. In order to allow pressure discontinuity across interfaces, double-values of pressure are necessary for interface nodes and triple-values of pressure on triple junction points. The resulting non-linear system of mass and momentum conservation is then solved by an Uzawa method, with the zero resultant condition on triple points reinforced at each time step. The method is used to investigate the rising of a liquid drop with an attached bubble in a lighter liquid.
Resumo:
This paper discusses road damage caused by heavy commercial vehicles. Chapter 1 presents some important terminology and a brief historical review of road construction and vehicle-road interaction, from ancient times to the present day. The main types of vehicle-generated road damage, and the methods that are used by pavement engineers to analyze them are discussed in Chapter 2. Attention is also given to the main features of the response of road surfaces to vehicle loads and mathematical models that have been developed to predict road response. Chapter 3 reviews the effects on road damage of vehicle features which can be studied without consideration of vehicle dynamics. These include gross vehicle weight, axle and tire configurations, tire contact conditions and static load sharing in axle group suspensions. The dynamic tire forces generated by heavy vehicles are examined in Chapter 4. The discussion includes their simulation and measurement, their principal characteristics, the effects of tires and suspension design on dynamic forces, and the potential benefits of using advanced suspensions for minimizing dynamic tire forces. Chapter 5 discusses methods for estimating the effects of dynamic tire forces on road damage. The two main approaches are either to examine the statistics of the forces themselves; or to calculate the response of a pavement model to the forces, and to calculate the resulting wear using a material damage model. The issues involved in assessing vehicles for 'road friendliness' are discussed in Chapter 6. Possible assessment methods include measuring strains in an instrumented pavement traversed by the vehicle, measuring dynamic tire forces, or measuring vehicle parameters such as the 'natural frequency' and 'damping ratio'. Each of these measurements involves different assumptions and analysis methods for converting the results into some measure of road damage. Chapter 7 includes a summary of the main conclusions of the paper and recommendations for tire and suspension design, road design and construction, and for vehicle regulations.
Resumo:
A number of VG configurations have been examined in a inlet relevant fiow-fleld which includes a terminal shock wave and subsequent subsonic diffuser. The flow-fleld was found to be highly sensitive to VG configuration. While the performance of one vane VG configuration was good over a wide range of streamwise positions, another quite similar vane configuration tended to perforin less well-especially when positioned further from the separation-and work is ongoing to determine the reasons behind tliis behavior. In addition, it was found that vane-type VG configurations were appreciably better at reducing separation than their micro-ramp counterparts. When combined with bleed in the centre-span region upstream of the VGs, the performance of vane type VGs was further enhanced and was the best of any configuration. © 2013 by Neil Titchener, Holger Babinsky and Eric Loth.
Resumo:
The defects in 3C-SiC film grown on (001) plane of Si substrate were studied using a 200 kV high-resolution electron microscope with point resolution of 0.2 nm. A posterior image processing technique, the image deconvolution, was utilized in combination with the image contrast analysis to distinguish atoms of Si from C distant from each other by 0.109 nm in the [110] projected image. The principle of the image processing technique utilized and the related image contrast theory is briefly presented. The procedures of transforming an experimental image that does not reflect the crystal structure intuitively into the structure map and of identifying Si and C atoms from the map are described. The atomic configurations for a 30 degrees partial dislocation and a microtwin have been derived at atomic level. It has been determined that the 30 degrees partial dislocation terminates in C atom and the segment of microtwin is sandwiched between two 180 degrees rotation twins. The corresponding stacking sequences are derived and atomic models are constructed according to the restored structure maps for both the 30 degrees partial dislocation and microtwin. Images were simulated based on the two models to affirm the above-mentioned results.
Resumo:
The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with these by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two-layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coefficients and energies are analyzed in detail, and some interesting physical phenomena are observed.
Resumo:
We report a new method for calculating transmission coefficients across arbitrary potential barriers based on the Runge-Kutta method. A numerical solution of the Schrodinger equation is calculated using the Runge-Kutta method,and a new model is established to analyze the numerical results to find the transmission coefficient. This technique is applied to various cases, such as parabolic potential barrier and double-barrier structures. Transmission probability with high precision is obtained and discussed. The tunnelling current density through a MOS structure is also explored and the result coincides with the Fowler-Nordheim model,which indicates the applicability of our method.
Resumo:
Two-electron-one-photon (TEOP) M1 and E2 transition energies, line strengths and transition probabilities between the states of the 2p(3) and 2s(2)2p odd configurations for B-like ions with 18 <= Z <= 92 have been calculated using the GRASP2K package based on the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Employing active-space techniques to expand the configuration list, we have systematically considered the valence, core-valence and core-core electron correlation effects. Breit interaction and quantum electrodynamical (QED) effects were also included to correct atomic state wavefunctions and the corresponding energies. Influences of electron correlation, Breit interaction and QED effects on transition energies and line strengths of the TEOP M1 and E2 transitions were analysed in detail. The present results were also compared with other theoretical and experimental values.