957 resultados para antioxidants enzymes
Resumo:
The electrochemical oxidation of caffeic, chlorogenic, sinapic, ferulic and p-coumaric acids was investigated by cyclic voltammetry on acetate buffer pH 5.6 on glassy carbon electrode and modified glassy carbon electrode. According to their voltammetric behavior, the antioxidant activity of these phenolic acids was evaluated and the results pointed to the following sequence: caffeic acid (E-a = +0.31 V) > chlorogenic acid (+ 0.38 V) > sinapic acid (+ 0.45 V) > ferulic acid (+ 0.53 V) >p-coumaric acid (+ 0.73 V). The results were confirmed by DPPH test, which evidenced the strongest antiradical activity for compounds possessing the cathecol moiety (caffeic and chlorogenic acids). Linear calibration graphs were obtained for their determination at concentrations from 1 x 10(-4) to 1 x 10(-3) mol L-1. The method was applied to orange juice. Selectivity was illustrated by the analysis of caffeic and chlorogenic acids electrodeposited on a glassy carbon electrode previously modified by electrochemical activation in the presence of ascorbic acid. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Carotenoids are natural pigments which are synthesized by plants and are responsible for the bright colors of various fruits and vegetables. There are several dozen carotenoids in the foods that we eat, and most of these carotenoids have antioxidant activity. beta-carotene has been best studied since, in most countries it is the most common carotenoid in fruits and vegetables. However, in the U.S., lycopene from tomatoes now is consumed in approximately the same amount as beta-carotene. Antioxidants (including carotenoids) have been studied for their ability to prevent chronic disease, beta-carotene and others carotenoids have antioxidant properties in vitro and in animal models. Mixtures of carotenoids or associations with others antioxidants (e.g. vitamin E) can increase their activity against free radicals. The use of animals models for studying carotenoids is limited since most of the animals do not absorb or metabolize carotenoids similarly to humans.Epidemiologic studies have shown an inverse relationship between presence of various cancers and dietary carotenoids or blood carotenoid levels. However, three out of four intervention trials using high dose beta-carotene supplements did not show protective effects against cancer or cardiovascular disease. Rather, the high risk population (smokers and asbestos workers) in these intervention trials showed an increase in cancer and angina cases. It appears that carotenoids (including beta-carotene) can promote health when taken at dietary levels, but may have adverse effects when taken in high dose by subjects who smoke or who have been exposed to asbestos. It will be the task of ongoing and future studies to define the populations that can benefit from carotenoids and to define the proper doses, lengths of treatment, and whether mixtures, lather than single carotenoids (e.g. beta-carotene) are more advantageous.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Carotenoids are natural pigments which are synthesized by plants and are responsible for the bright colors of various fruits and vegetables. There are several dozen carotenoids in the foods that we eat, and most of these carotenoids have antioxidant activity. β-carotene has been best studied since, in most countries it is the most common carotenoid in fruits and vegetables. However, in the U.S., lycopene from tomatoes now is consumed in approximately the same amount as β-carotene. Antioxidants (including carotenoids) have been studied for their ability to prevent chronic disease. β-carotene and others carotenoids have antioxidant properties in vitro and in animal models. Mixtures of carotenoids or associations with others antioxidants (e.g. vitamin E) can increase their activity against free radicals. The use of animals models for studying carotenoids is limited since most of the animals do not absorb or metabolize carotenoids similarly to humans. Epidemiologic studies have shown an inverse relationship between presence of various cancers and dietary carotenoids or blood carotenoid levels. However, three out of four intervention trials using high dose β- carotene supplements did not show protective effects against cancer or cardiovascular disease. Rather, the high risk population (smokers and asbestos workers) in these intervention trials showed an increase in cancer and angina cases. It appears that carotenoids (including β-carotene) can promote health when taken at dietary levels, but may have adverse effects when taken in high dose by subjects who smoke or who have been exposed to asbestos. It will be the task of ongoing and future studies to define the populations that can benefit from carotenoids and to define the proper doses, lengths of treatment, and whether mixtures, rather than single carotenoids (e.g. β-carotene) are more advantageous.
Resumo:
Xylanase, β-glucosidase, β-xylosidase, endoglucanase and polygalacturonase production from Curvularia inaequalis was carried out by means of solid-state and submerged fermentation using different carbon sources. β-Glucosidase, β-xylosidase, polygalacturonase and xylanase produced by the microorganisms were characterized. β-Glucosidase presented optimum activity at pH 5.5 whereas xylanase, polygalacturonase and β-xylosidase activities were optimal at pH 5.0. Maximal activity of β-glucosidase was determined at 60°C, β-xylosidase at 70°C, and polygalacturonase and xylanase at 55°C. These enzymes were stable at acidic to neutral pH and at 40-45°C. The crude enzyme solution was studied for the hydrolysis of agricultural residues.
Resumo:
This research deals with the analysis of the enzymes present in thoracic gland extracts from newly emerged, nurse workers, forager workers, newly emerged males, and mature males of A. mellifera L. (Hymenoptera, Apoidea, Apidae). The enzymes found in larger quantities in the thoracic gland occurred in all classes of workers and are digestive. Acid phosphatase and Naphtol-AS-BI-phosphohydrolase act in protein synthesis, leucine arylamidase hydrolyses proteins and a-glucosidase actuate in the nectar processing into honey. Naphtol-AS-BI-phosphohydrolase was found in larger quantities only in workers, this suggests action in protein synthesis by the thoracic gland, b-galactosidase is in larger amounts in the newly emerged bees (workers and males) this aids in the provision of other substances to be used as an energy source when glucose or sucrose are absent. Differences between enzymatic profiles from workers and males are usually related to their colony tasks, or related to their physiological necessities per individual in specific life stages.
Resumo:
This study reports on research of enzymes produced by the hypopharyngeal glands, which are related to food storing in the colony, from gland extracts from nurse and forager workers of S. postica. Only the presence of the saccharase was detected in the extracts from the glands of forager workers. The results were compared to the enzymatic content of similar extracts of A. mellifera taking into account the behavioral differences among the two species.