925 resultados para algorithm optimization
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.
Resumo:
The problem of MPLS networks survivability analysis is considered in this paper. The survivability indexes are defined which take into account the specificity of MPLS networks and the algorithm of its estimation is elaborated. The problem of MPLS network structure optimization under the constraints on the survivability indexes is considered and the algorithm of its solution is suggested. The experimental investigations were carried out and their results are presented.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.
Resumo:
This research was partially supported by the Serbian Ministry of Science and Ecology under project 144007. The authors are grateful to Ivana Ljubić for help in testing and to Vladimir Filipović for useful suggestions and comments.
Resumo:
* The work is supported by RFBR, grant 04-01-00858-a.
Resumo:
An effective aperture approach is used as a tool for analysis and parameter optimization of mostly known ultrasound imaging systems - phased array systems, compounding systems and synthetic aperture imaging systems. Both characteristics of an imaging system, the effective aperture function and the corresponding two-way radiation pattern, provide information about two of the most important parameters of images produced by an ultrasound system - lateral resolution and contrast. Therefore, in the design, optimization of the effective aperture function leads to optimal choice of such parameters of an imaging systems that influence on lateral resolution and contrast of images produced by this imaging system. It is shown that the effective aperture approach can be used for optimization of a sparse synthetic transmit aperture (STA) imaging system. A new two-stage algorithm is proposed for optimization of both the positions of the transmitted elements and the weights of the receive elements. The proposed system employs a 64-element array with only four active elements used during transmit. The numerical results show that Hamming apodization gives the best compromise between the contrast of images and the lateral resolution.
Resumo:
This paper presents some results of PLA area optimizing by means of its column and row folding. A more restricted type of PLA simple folding is considered. It is introduced by Egan and Liu and called as bipartite folding. An efficient approach is presented which allows finding an optimal bipartite folding without exhaustive computational efforts.
Resumo:
The article presents the exact algorithm for solving one case of the job-scheduling problem for the case when the source matrix is ordered by rows.
Resumo:
In this article the new approach for optimization of estimations calculating algorithms is suggested. It can be used for finding the correct algorithm of minimal complexity in the context of algebraic approach for pattern recognition.
Resumo:
The problem of finding the optimal join ordering executing a query to a relational database management system is a combinatorial optimization problem, which makes deterministic exhaustive solution search unacceptable for queries with a great number of joined relations. In this work an adaptive genetic algorithm with dynamic population size is proposed for optimizing large join queries. The performance of the algorithm is compared with that of several classical non-deterministic optimization algorithms. Experiments have been performed optimizing several random queries against a randomly generated data dictionary. The proposed adaptive genetic algorithm with probabilistic selection operator outperforms in a number of test runs the canonical genetic algorithm with Elitist selection as well as two common random search strategies and proves to be a viable alternative to existing non-deterministic optimization approaches.
Resumo:
Estimates Calculating Algorithms have a long story of application to recognition problems. Furthermore they have formed a basis for algebraic recognition theory. Yet use of ECA polynomials was limited to theoretical reasoning because of complexity of their construction and optimization. The new recognition method “AVO- polynom” based upon ECA polynomial of simple structure is described.
Resumo:
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line.
Resumo:
Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35, 93B51; 03B42; 70Q05; 49N05
Resumo:
2000 Mathematics Subject Classification: 91B28, 65C05.