999 resultados para adsorção competitiva
Resumo:
Chemical modification of clays has been extremely studied in the search for improvements of their properties for use in various areas, such as in combating pollution by industrial effluents and dyes. In this work, the vermiculite was chemically modified in two ways, characterized and evaluated the adsorption of methylene blue dye. First was changed with the addition of a surfactant (hexadecyltrimethylammonium bromide, BHTA) making it an organophilic clay and then by adding an acid (HCl) by acid activation. Some analyzes were performed as X-ray fluorescence (FRX), X-ray diffraction (DRX), adsorption isotherms of methylene blue dye, infrared (FTIR) , scanning electron microscopy (SEM), thermal gravimetric analysis and spectroscopy energy dispersive (EDS). Analysis by FRX of natural vermiculite indicates that addition of silicon and aluminum, clay presents in its structure the magnesium, calcium and potassium with 16 % organic matter cations. The DRX analyzes indicated that the organic vermiculite was an insertion of the surfactant in the space between the lamellae, vermiculite and acid partial destruction of the structure with loss of crystallinity. The adsorption isotherms of methylene blue showed that there was a significant improvement in the removal of dye to the vermiculite with the addition of cationic surfactant hexadecyltrimethylammonium bromide and treatment with acid using HCl 2 mol/L. In acid vermiculites subsequently treated with surfactant, the adsorption capacity increased with respect to natural vermiculite, however was much lower compared vermiculite modified with acid and surfactant separately. Only the acidic vermiculite treated with surfactant adjusted to the Langmuir model. As in the infrared spectrometry proved the characteristics of natural vermiculite. In the organic vermiculite was observed the appearance of characteristic bands of CH3, CH2, and (CH3)4N. Already on acid vermiculite, it was realized a partial destruction with decreasing intensity of the characteristic band of vermiculite that is between 1074 and 952 cm-1. In the SEM analysis, it was observed that there was partial destruction to the acid treatment and a cluster is noted between the blades caused by the presence of the surfactant. The TG shows that the higher mass loss occurs at the beginning of the heating caused by the elimination of water absorbed on the surface between layers. In the organic vermiculite also observed a loss of mass between 150 and 300 °C caused decomposition of the alkylammonium molecules (surfactants)
Resumo:
In this work were synthesized the materials called vanadyl phosphate, hydrogen vanadyl phosphate and vanadyl phosphate doped by transition metals with the aim in adsorption the following compounds: ammonia, hydrogen sulfide and nitrogen oxide. To characterize the starting compounds was used DRX, FTIR, FRX and TG analysis. After the characterization of substrates, proceeded de adsorption of NH3 and H2S gases in reactor, passing the gases with continuous flow for 30 min and room temperature. Gravimetric data indicate that the matrices of higher performance in adsorption of ammonia was those doped by aluminum and manganese, obtaining results of 216,77 mgNH3/g and 200,40 mgNH3/g of matrix, respectively. The matrice of higher performance in adsorption of hydrogen sulfide was that doped by manganese, obtaining results of 86,94 mgH2S/g of matrix. The synthesis of substrates VOPO4.2H2O and MnVOPO4.2H2O with nitrogen oxide was made in solution, aiming the final products VOPO4.G.nH2O and MnVOPO4.G.nH2O (G = NO and n = number of water molecules). The thermo analytical behavior and the infrared spectroscopy are indicative of formation of VOPO4.2,5NO.3H2O compound. Results of scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS) of materials vanadyl phosphate and vanadyl phosphate modified after reaction in solid state or in solution with the gases show morphology changes in substrates, beyond the formation of orthorhombic sulfur crystals over their respective hosts when these adsorb hydrogen sulfide
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
Intensive use of machinery and engines burning fuel dumps into the atmosphere huge amounts of carbon dioxide (CO2), causing the intensification of the greenhouse effect. Climate changes that are occurring in the world are directly related to emissions of greenhouse gases, mainly CO2, gases, mainly due to the excessive use of fossil fuels. The search for new technologies to minimize the environmental impacts of this phenomenon has been investigated. Sequestration of CO2 is one of the alternatives that can help minimize greenhouse gas emissions. The CO2 can be captured by the post-combustion technology, by adsorption using adsorbents selective for this purpose. With this objective, were synthesized by hydrothermal method at 100 °C, the type mesoporous materials MCM - 41 and SBA-15. After the synthesis, the materials were submitted to a calcination step and subsequently functionalized with different amines (APTES, MEA, DEA and PEI) through reflux method. The samples functionalized with amines were tested for adsorption of CO2 in order to evaluate their adsorption capacities as well, were subjected to various analyzes of characterization in order to assess the efficiency of the method used for functionalization with amines. The physic-chemical techniques were used: X- ray diffraction (XRD), nitrogen adsorption and desorption (BET/BJH), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CNH Analysis, Thermogravimetry (TG/DTG) and photoelectron spectroscopy X-ray (XPS). The CO2 adsorption experiments were carried out under the following conditions: 100 mg of adsorbent, at 25 °C under a flow of 100 ml/min of CO2, atmospheric pressure and the adsorption variation in time 10-210 min. The X-ray diffraction with the transmission electron micrographs for the samples synthesized and functionalized, MCM-41 and SBA-15 showed characteristic peaks of hexagonal mesoporous structure formation, showing the structure thereof was obtained. The method used was efficient reflux according to XPS and elemental analysis, which showed the presence of amines in the starting materials. The functionalized SBA -15 samples were those that had potential as best adsorbent for CO2 capture when compared with samples of MCM-41, obtaining the maximum adsorption capacity for SBA-15-P sample
Resumo:
Dispersions composed of polyelectrolyte complexes based on chitosan and poly(methacrylic acid), PMAA, were obtained by the dropping method and template polymerization. The effect of molecular weight of PMAA and ionic strength on the formation of chitosan/poly(methacrylic acid), CS/PMAA, complexes was evaluated using the dropping method. The increase in molecular weight of PMAA inhibited the formation of insoluble complexes, while the increase in ionic strength first favored the formation of the complex followed by inhibiting it at higher concentrations. The polyelectrolyte complexation was strongly dependent on macromolecular dimensions, both in terms of molecular weight and of coil expansion/contraction driven by polyelectrolyte effect. The resultant particles from dropping method and template polymerization were characterized as having regions with different charge densities: chitosan predominating in the core and poly(methacrylic acid) at the surface, the particles being negatively charged, as a consequence. Albumin was adsorbed on templatepolymerized CS/PMAA complexes (after crosslinking with glutardialdehyde) and pH was controlled in order to obtain two conditions: (i) adsorption of positively charged albumin, and (ii) adsorption of albumin at its isoelectric point. Adsorption isotherms and zeta potential measurements showed that albumin adsorption was controlled by hydrogen bonding/van der Waals interactions and that brushlike structures may enhance adsorption of albumin on these particles
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O trabalho foi realizado no Departamento de Ciência e Tecnologia Agroindustrial, da UFPel/Pelotas, com o objetivo de avaliar a utilização de embalagens de polietileno de baixa densidade (PEBD) e do adsorvedor de etileno em caquis cv. Fuyu. Na safra de 2000-2001, os frutos foram armazenados a granel, em embalagens de PEBD de 0,022 mm contendo doze e 40 frutos e em embalagens de PEBD de 0,033 mm contendo doze frutos, sendo que apenas metade das embalagens possuía o sachê adsorvedor de etileno. de acordo com as variáveis analisadas (distúrbios fisiológicos, concentração/produção de CO2 e etileno), os frutos acondicionados nas embalagens de 0,022 mm contendo doze frutos, com e sem o adsorvedor, apresentavam-se em estádio menos avançado de amadurecimento e com qualidade superior aos demais tratamentos. Já na safra de 2001 - 2002, sob os mesmos parâmetros avaliados no ano anterior, foram testados o armazenamento a granel e o armazenamento em embalagens de PEBD de 0,022 mm, contendo doze, dezoito e 24 frutos, também com e sem a utilização de sachê adsorvedor de etileno. Após 90 dias de armazenamento refrigerado (AR), mais os cinco dias de simulação de comercialização, os frutos acondicionados nas embalagens de 0,022 mm, contendo doze e dezoito frutos, independentemente do sistema de adsorção de etileno, apresentaram os melhores resultados em todas as variáveis testadas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Este artigo tem por objetivo discutir e apresentar algumas considerações acerca das vantagens e implicações da utilização do conceito de UEN - Unidade Estratégica de Negócios, na gestão de empresas, de modo geral. O artigo discute algumas relações que devem ser esclarecidas antes da plena adoção do conceito. Baseado na literatura e na experiência do autor em consultoria em empresas, o artigo propõe uma abordagem metodológica para permitir que gerentes possam definir, analisar e compreender os efeitos da utilização do conceito de UEN - Unidade Estratégica de Negócios, considerando as dimensões competitivas ou Fatores Críticos de Sucesso típicos e intrínsecos da natureza de cada negócio.
Resumo:
In this work it was studied the capacity of cellulose and chemically modified celluloses (carboxymethylcellulose, cellulose phosphate and oxicellulose) to adsorb copper(II) cations of aqueous and non aqueous solutions. The influence of the principal physical chemical parameters on the adsorption process was examined using the batch adsorption method and copper(II) perchlorate solutions, the maximum adsorption capacity determined for adsorbents were as follows (mol.g(-1)): cellulose, 0.54 . 10(-5); carboxymethylcellulose, 1.28 . 10(-4); cellulose phosphate, 1.12 . 10(-4); oxicellulose, 0.38 . 10(-4).
Resumo:
The cultivation of sugarcane demands the use of herbicides such as Diuron and Hexazinone. Some supply wells from Ribeirão Preto, SP, Brazil, built in the Guarani Aquifer are located in recharge points, and the presence of sandy Quartzarenic Neosol in these areas increases the vulnerability of the groundwater to contamination from herbicides This paper reports the water quality monitored in some wells located in the recharge area and the removal of Diuron and Hexazinone by means of adsorption in granular activated carbon (GAC), preceded or not by preoxidation with chlorine and chlorine dioxide in a pilot plant. The results indicated that Diuron was more strongly adsorbed than Hexazinone and that the saturation time of the GAC in the test with preoxidation was shorter than in the test without preoxidation, which may have occurred mainly due to the formation of by-products that competed with the adsorption of the herbicides.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía