964 resultados para Yeast tolerance to biomass hydrolysates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme abiotic factors, such drought combined with heat waves and/or high UVB radiation are predicted to become more frequent in the future. The impact on plant production of these challenges on multipurpose Moringa oleifera L. remains unclear. A susceptibility of this species may lead to increase poverty in endangered regions. M. oleifera is a woody species native from sub-Himalaya regions under high climate stress pressure. The interest on this species is emerging due to its several medicinal properties and its nutritional value. Agropharmaceutical industry is interest in this species too. To understand the impact of increased climate factors, young (2 months old) plants of this species were exposed to water deficit (WD) and UVB (alone or combined). WD and WD+UVB imposition consists of unwater for 4 days. After 1 day withholding water, UVB and WD+UVB were irradiated with 26.3 kJ m-2 distributed per 3 days. Immediately after treatment exposition (1 day) and after 10 days, plant water status, growth, carbon metabolism and oxidative stress were measured. Overall no significant differences were observed in WD, regarding the parameters analysed, except on gas exchanges, MDA and phenols. The plants exposed to UVB showed, in general, more severe effects, as higher pigment content, MDA and membrane permeability, while no changes were observed in the total antioxidant activity. Plants exposed to UVB+WD, despite changes observed, the impact was lower than the one observed in UVB exposed plants, meaning that a protective/adaptive mechanism was developed in the plants under combined stressors. On the other hand, in all treatments the net CO2 assimilation rate decreased. Results suggest that M. oleifera has some tolerance to WD and UVB, and that develops mechanism of adaptation to these two types of stress that often arise in combination under a climate change scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofilms are multicellular bacterial structures that adhere to surfaces and often endow the bacterial population with tolerance to antibiotics and other environmental insults. Biofilms frequently colonize the tubing of medical devices through mechanisms that are poorly understood. Here we studied the helicoidal spread of Pseudomonas putida biofilms through cylindrical conduits of varied diameters in slow laminar flow regimes. Numerical simulations of such flows reveal vortical motion at stenoses and junctions, which enhances bacterial adhesion and fosters formation of filamentous structures. Formation of long, downstream-flowing bacterial threads that stem from narrowings and connections was detected experimentally, as predicted by our model. Accumulation of bacterial biomass makes the resulting filaments undergo a helical instability. These incipient helices then coarsened until constrained by the tubing walls, and spread along the whole tube length without obstructing the flow. A three-dimensional discrete filament model supports this coarsening mechanism and yields simulations of helix dynamics in accordance with our experimental observations. These findings describe an unanticipated mechanism for bacterial spreading in tubing networks which might be involved in some hospital-acquired infections and bacterial contamination of catheters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizobium freirei PRF 81 is employed in common bean commercial inoculants in Brazil, due to its outstanding efficiency in fixing nitrogen, competitiveness and tolerance to abiotic stresses. Among the environmental conditions faced by rhizobia in soils, acidity is perhaps the encountered most, especially in Brazil. So, we used proteomics based approaches to study the responses of PRF 81 to a low pH condition. R. freirei PRF 81 was grown in TY medium until exponential phase in two treatments: pH 6,8 and pH 4,8. Whole-cell proteins were extracted and separated by two-dimensional gel electrophoresis, using IPG-strips with pH range 4-7 and 12% polyacrilamide gels. The experiment was performed in triplicate. Protein spots were detected in the high-resolution digitized gel images and analyzed by Image Master 2D Platinum v 5.0 software. Relative volumes (%vol) of compared between the two conditions tested and were statistically evaluated (p ≤ 0.05). Even knowing that R. freirei PRF 81 can still grow in more acid conditions, pH 4.8 was chosen because didn´t affect significantly the bacterial growth kinetics, a factor that could compromise the analysis. Using a narrow pH range, the gel profiles displayed a better resolution and reprodutibility than using broader pH range. Spots were mostly concentrated between pH 5-7 and molecular masses between 17-95 kDa. From the six hundred well-defined spots analyzed, one hundred and sixty-three spots presented a significant change in % vol, indicating that the pH led to expressive changes in the proteome of R. freirei PRF 81. Of these, sixty-one were up-regulated and one hundred two was downregulated in pH 4.8 condition. Also, fourteen spots were only identified in the acid condition, while seven spots was exclusively detected in pH 6.8. Ninety-five differentially expressed spots and two exclusively detected in pH 4,8 were selected for Maldi-Tof identification. Together with the genome sequencing and the proteome analysis of heat stress, we will search for molecular determinants of PRF 81 related to capacity to adapt to stressful tropical conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whisky is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to development of spirit flavour and aroma characteristics. Distillers must therefore pay very careful attention to the strain of yeast exploited to ensure consistency of fermentation performance and spirit congener profiles. In the Scotch whisky industry, initiatives to address sustainability issues facing the industry (for example, reduced energy and water usage) have resulted in a growing awareness regarding criteria for selecting new distilling yeasts with improved efficiency. For example, there is now a desire for Scotch whisky distilling yeasts to perform under more challenging conditions such as high gravity wort fermentations. This article highlights the important roles of S. cerevisiae strains in whisky production and describes key fermentation performance attributes sought in distiller's yeast, such as high alcohol yields, stress tolerance and desirable congener profiles. We hope that the information herein will be useful for whisky producers and yeast suppliers in selecting new distilling strains of S. cerevisiae, and for the scientific community to stimulate further research in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waterlogging of soils is common in nature. The low availability of oxygen under these conditions leads to hypoxia of the root system impairing the development and productivity of the plant. The presence of nitrate under flooding conditions is regarded as being beneficial towards tolerance to this stress. However, it is not known how nodulated soybean plants, cultivated in the absence of nitrate and therefore not metabolically adapted to this compound, would respond to nitrate under root hypoxia in comparison with non-nodulated plants grown on nitrate. A study was conducted with (15)N labelled nitrate supplied on waterlogging for a period of 48 h using both nodulated and non-nodulated plants of different physiological ages. Enrichment of N was found in roots and leaves with incorporation of the isotope in amino acids, although to a much smaller degree under hypoxia than normoxia. This demonstrates that nitrate is taken up under hypoxic conditions and assimilated into amino acids, although to a much lesser extent than for normoxia. The similar response obtained with nodulated and non-nodulated plants indicates the rapid metabolic adaptation of nodulated plants to the presence of nitrate under hypoxia. Enrichment of N in nodules was very much weaker with a distinct enrichment pattern of amino acids (especially asparagine) suggesting that labelling arose from a tissue source external to the nodule rather than through assimilation in the nodule itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the influence of l-arginine supplementation in combination with physical training on mitochondrial biomarkers from gastrocnemius muscle and its relationship with physical performance. Male Wistar rats were divided into four groups: control sedentary (SD), sedentary supplemented with l-arginine (SDLA), trained (TR) and trained supplemented with l-arginine (TRLA). Supplementation of l-arginine was administered by gavage (62.5mg/ml/day/rat). Physical training consisted of 60min/day, 5days/week, 0% grade, speed of 1.2km/h. The study lasted 8weeks. Skeletal muscle mitochondrial enriched fraction as well as cytoplasmic fractions were obtained for Western blotting and biochemical analyses. Protein expressions of transcriptor coactivator (PGC-1α), transcriptor factors (mtTFA), ATP synthase subunit c, cytochrome oxidase (COXIV), constitutive nitric oxide synthases (eNOS and nNOS), Cu/Zn-superoxide dismutase (SOD) and manganese-SOD (Mn-SOD) were evaluated. We also assessed in plasma: lipid profile, glycemia and malondialdehyde (MDA) levels. The nitrite/nitrate (NOx(-)) levels were measured in both plasma and cytosol fraction of the gastrocnemius muscle. 8-week l-arginine supplementation associated with physical training was effective in promoting greater tolerance to exercise that was accompanied by up-regulation of the protein expressions of mtTFA, PGC-1α, ATP synthase subunit c, COXIV, Cu/Zn-SOD and Mn-SOD. The upstream pathway was associated with improvement of NO bioavailability, but not in NO production since no changes in nNOS or eNOS protein expressions were observed. This combination would be an alternative approach for preventing cardiometabolic diseases given that in overt diseases a profound impairment in the physical performance of the patients is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of inhibitory antibodies against factor VIII (FVIII) (inhibitor) is the major complication in haemophilia A patients. The FVIII-binding antibodies development comprises a polyclonal immunoglobulin (Ig) G response. Recent studies showed strong correlation between the presence of neutralizing anti-FVIII antibodies (inhibitors) and IgG4 subclass. The aim of this study was to evaluate anti-FVIII IgG subclasses in haemophilia A patients with inhibitor both in a cross-sectional and in a longitudinal analysis. Inhibitors were determined by Nijmegen-Bethesda assay. Anti-FVIII IgG subclasses were performed by ELISA, and samples from 20 healthy individuals were used to validate the test. We studied 25 haemophilia A patients with inhibitor, previously treated exclusively with plasma-derived FVIII concentrates or bypassing agents. The IgG subclasses distributions were evaluated in two groups of patients classified according to inhibitor response. IgG1 and IgG4 antibodies were most prominent in haemophilia A patients with inhibitors when compared with IgG2 and IgG3. This study reports for the first time the behaviour of FVIII-binding IgG1 and IgG4 subclasses in a longitudinal analysis, in a clinical setting, of high-response inhibitor haemophilia A patients, showing the correlation of IgG4 and the inhibitor titres. In spite of being considered a non-pathologic antibody subclass with anti-inflammatory properties in other situations, IgG4 is correlated with the presence of high-titre inhibitor in the haemophilia setting. The comprehension of the IgG4 role in immune response may be crucial to establish the process for designing specific tolerance to FVIII.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) has been considered a key molecule in infammation. OBJECTIVE: The aim of this study was to evaluate the effect of treatment with L-NAME and sodium nitroprussiate, substances that inhibit and release NO, respectively, on tissue tolerance to endodontic irrigants. MATERIAL AND METHODS: The vital dye exudation method was used in a rat subcutaneous tissue model. Injections of 2% Evans blue were administered intravenously into the dorsal penial vein of 14 male rats (200-300 g). The NO inhibitor and donor substances were injected into the subcutaneous tissue in the dorsal region, forming two groups of animals: G1 was inoculated with L-NAME and G2 with sodium nitroprussiate. Both groups received injections of the test endodontic irrigants: acetic acid, 15% citric acid, 17% EDTA-T and saline (control). After 30 min, analysis of the extravasated dye was performed by light absorption spectrophotometry (620 nm). RESULTS: There was statistically signifcant difference (p<0.05) between groups 1 and 2 for all irrigants. L-NAME produced a less intense infammatory reaction and nitroprussiate intensifed this process. CONCLUSIONS: Independently of the administration of NO inhibitors and donors, EDTA-T produced the highest irritating potential in vital tissue among the tested irrigating solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Informações a respeito de cultivares adaptadas ao sistema de cultivo orgânico são escassas. O objetivo deste estudo foi avaliar, sob sistema de cultivo orgânico, genótipos nacionais e estrangeiros desenvolvidos para o cultivo convencional, quanto ao potencial produtivo, em condições de campo. O experimento foi conduzido em 2008, no Pólo APTA Leste Paulista, em Monte Alegre do Sul-SP. O delineamento experimental foi em blocos ao acaso, com 18 tratamentos e quatro repetições. Cada parcela foi constituída por 80 batatas-semente, dispostas em quatro linhas de 5 m de comprimento, espaçadas de 80 cm, com 25 cm entre tubérculos. Os genótipos avaliados foram Agata, Asterix, Caesar, Cupido, Éden, Melody, Novella e Vivaldi, de origem estrangeira; e Apuã, Aracy, Catucha, IAC Aracy Ruiva, Itararé, Monte Alegre 172, IAC 6090, APTA 16.5, APTA 15.20 e APTA 21.54, nacionais. Foram avaliadas as características de produtividade total e comercial de tubérculos, massa média total e comercial de tubérculos, teor de matéria seca e severidade da pinta-preta (Alternaria solani). Os clones APTA 16.5, APTA 21.54 e IAC 6090, e as cultivares Cupido, Apuã, Itararé e Monte Alegre 172 foram os mais produtivos. 'APTA 21.54' superou os demais em relação a produtividade comercial (18,07 t ha-1), sendo que 'APTA 16.5', 'Cupido', 'IAC 6090' e 'Itararé' formaram o segundo grupo. As maiores massas médias de tubérculos foram apresentadas pelas cultivares Itararé e Cupido. O clone IAC 6090 e as cultivares Aracy e Aracy Ruiva foram as que apresentaram maiores teores de matéria seca, com valor médio de 22,91%. 'APTA 16.5', 'Apuã', 'Aracy', 'Aracy Ruiva', 'Éden', 'Ibituaçú' e 'Monte Alegre 172' apresentaram alto nível de resistência à pinta-preta. As cultivares Itararé, Apuã e Cupido são adaptadas ao cultivo orgânico, e os clones avançados APTA 16.5, APTA 21.54 e IAC 6090 apresentam potencial de cultivo no sistema orgânico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tolerance to the combined effects of temperature and salinity was investigated in the interstitial isopod Coxicerberus ramosae (Albuquerque, 1978), a species of intertidal zone of sandy beaches in Rio de Janeiro, Brazil. The animals were collected on Praia Vermelha Beach. The experiments lasted 24 h and nine salinities and seven temperatures were used for a total of 63 combinations. Thirty animals were tested in each combination. The species showed high survival in most of the combinations. The temperature of 35 ºC was lethal and at 5 ºC, the animals tolerated only a narrow range of salinities. The statistical analyses showed that the effects of temperature and salinity were significant on the survival, which confirmed the euryhalinity and eurythermy of this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies. In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI) fine (D(p) < 2.5 mu m) and coarse (2.5 mu m < Dp < 10 mu m) aerosol particles were sampled from February to June (wet season) and from August to September (dry season) 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 mu g m(-3) during the wet season and 4.2 mu g m(-3) during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 mu g m(-3), respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC); the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m(2) g(-1) at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF) analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA), and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP) dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas. The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation of elemental carbon (EC) by the TM5 model during the dry season and OC both during the dry and wet periods. The overestimation was likely due to the overestimation of biomass burning emission inventories and SOA production over tropical areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article discusses possible approaches for optical network capacity upgrade by considering the use of different modulation formats at 40 Gb/s. First, a performance evaluation is carried out regarding tolerance to three impairments: spectral narrowing due to filter cascading, chromatic dispersion, and self-phase modulation. Next, a cost-benefit analysis is conducted, considering the specific optoelectronic components required for the optical transmitter/receiver configuration of each format.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Safe application of the anaerobic sequencing biofilm batch reactor (ASBBR) still depends on deeper insight into its behavior when faced with common operational problems in wastewater treatments such as tolerance to abrupt variations in influent concentration, so called shock loads. To this end the current work shows the effect of organic shock loads on the performance of an ASBBR, with a useful volume of 5 L, containing 0.5-cm polyurethane cubes and operating at 30 degrees C with mechanical stirring of 500 rpm. In the assays 2 L of two types of synthetic wastewater were treated in 8-h cycles. Synthetic wastewater I was based on sucrose-amide-cellulose with concentration of 500 mg COD/L and synthetic wastewater II was based on volatile acids with concentration ranging from 500 to 2000 mg COD/L. Organic shock loads of 2-4 times the operation concentration were applied during one and two cycles. System efficiency was monitored before and after application of the perturbation. When operating with concentrations from 500 to 1000 mg COD/L and shock loads of 2-4 times the influent concentration during one or two cycles the system was able to regain stability after one cycle and the values of organic matter, total and intermediate volatile acids, bicarbonate alkalinity and pH were similar to those prior to the perturbations. At a concentration of 2000 mg COD/L the reactor appeared to be robust, regaining removal efficiencies similar to those prior to perturbation at shock loads twice the operation concentration lasting one cycle and stability was recovered after two cycles. However, for shock loads twice the operation concentration during two cycles and shock loads four times the operation concentration during one or two cycles filtered sample removal efficiency decreased to levels different from those prior to perturbation, on an average of 90-80%, approximately, yet the system managed to attain stability within two cycles after shock application. Therefore, this investigation envisions the potential of full scale application of this type of bioreactor which showed robustness to organic shock loads, despite discontinuous operation and the short times available for treating total wastewater volume. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most important recent improvements in cardiology is the use of ventricular assist devices (VADs) to help patients with severe heart diseases, especially when they are indicated to heart transplantation. The Institute Dante Pazzanese of Cardiology has been developing an implantable centrifugal blood pump that will be able to help a sick human heart to keep blood flow and pressure at physiological levels. This device will be used as a totally or partially implantable VAD. Therefore, an improvement on device performance is important for the betterment of the level of interaction with patient`s behavior or conditions. But some failures may occur if the device`s pumping control does not follow the changes in patient`s behavior or conditions. The VAD control system must consider tolerance to faults and have a dynamic adaptation according to patient`s cardiovascular system changes, and also must attend to changes in patient conditions, behavior, or comportments. This work proposes an application of the mechatronic approach to this class of devices based on advanced techniques for control, instrumentation, and automation to define a method for developing a hierarchical supervisory control system that is able to perform VAD control dynamically, automatically, and securely. For this methodology, we used concepts based on Bayesian network for patients` diagnoses, Petri nets to generate a VAD control algorithm, and Safety Instrumented Systems to ensure VAD system security. Applying these concepts, a VAD control system is being built for method effectiveness confirmation.