975 resultados para X-band electron spin resonances
Resumo:
The posthepatic septum (PHS) divides the body cavity of Tupinambis merianae into two parts: the cranial one containing the lungs and liver and the caudal one containing the remaining viscera. The PHS is composed of layers of collagenous fibers and bundles of smooth muscle, neither of which show systematic orientation, as well as isolated blood vessels, lymphatic vessels, and nerves. Striated muscle of the abdominal wall does not invade the PHS. The contractions of the smooth muscles may stabilize the pleurohepatic cavity under conditions of elevated aerobic needs rather than supporting breathing on a breath-by-breath basis. Surgical removal of the PHS changes the anatomical arrangement of the viscera significantly, with stomach and intestine invading the former pleurohepatic cavity and reducing the space for the lungs, Thus, the PHS is essential to maintain the visceral topography in Tupitionibis. J. Morphol. 258:151-157, 2003. (C) 2003 Wiley-Liss. Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electron spin resonance of Eu(2+) (4f(7), S=7/2) in a La hexaboride (LaB(6)) single crystal shows a single anisotropic Dysonian resonance. From the observed negative g shift of the resonance, it is inferred that the Eu(2+) ions are covalent exchange coupled to the B 2p-like host conduction electrons. From the anisotropy of the spectra (linewidth and field for resonance), we found that the S ground state of Eu(2+) ions experience a cubic crystal field of a negative fourth order crystal field parameter (CFP), b(4)=-11.5(2.0) Oe, in agreement with the negative fourth order CFP, A(4), found for the non-S ground state R hexaborides. These results support covalency as the dominant contribution to the fourth order CFP for the whole R hexaboride family.
Resumo:
The electron spin resonance (ESR) spectra of Eu2+ (4f(7), S = 7/2) in LaB6 single crystal show a single Dysonian resonance for the localized Eu2+ magnetic moments. It is shown that the Eu2+ ions are covalent exchange coupled to the (B) 2p-like host conduction electrons. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The behaviour of nitrobenzenesulfonamide anion radicals generated from the electrochemical reduction of aliphatic and aromatic amines protected by nitrobenzenesulfonyl (nosyl) groups in N,N-' dimethylformamide has been reported. The species have been characterized by voltammetry and optical and electron spin resonance spectroscopies. The visible spectra of the anion radicals were recorded and the hyperfine splitting constants were assigned to specific proton positions and nitrogen nuclei of the molecule. The stabilities of the anion radicals are affected by electronic properties of the protecting group and specific features of the amines, which show direct influence on the route of cathodic cleavage of the nitrobenzenesulfonamides.
Resumo:
Electron-spin-resonance and dc conductivity data show a thermal-history-dependent transition at 240 K in pressed pellets of ClO4--doped poly(3-methylthiophene) (P3MT). We discuss the possibility of this transition to be a Peierls transition from a room-temperature-metallic to a charge-density-wave state driven by anions ordering at this temperature. Below 100 K, dc conductivity shows a change from linear to exponential decay. Nonlinear conductivity has also been observed in this system for very low electric fields.
Resumo:
The magnetic properties of doped pellets of poly(3-methylthiophene) showing room temperature ferromagnetic behaviour have been discussed in a previous article. The magnetic behaviour was attributed to a weak ferromagnetic phase, due to the superexchange interaction of polarons via the dopant anions. The Dzialoshinsky-Morya interaction among canted spins was proposed to explain the ferromagnetism. In this article the main conclusions of that work concerning the magnetic behaviour are revised. The basic assumption now is that the magnetic moments are spin 1/2 polarons that can interact antiferromagnetically and/or ferromagnetically. In the small crystalline regions of the polymer, which are identified with the polymer portion that remains ferromagnetic at room temperature, the interaction gives rise to S = 0 and 1 bipolarons and the S = 1 triplet state is lower in energy. In the disordered region, disorder will prevent the complete S = 1 and 0 coupling and bands of polarons ferromagnetically and antiferromagnetically coupled will appear. Using this approach, all the magnetization data can be qualitatively explained, as well as the electron spin resonance data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
From Electron Spin Resonance (ESR) data in pressed pellets of BF4 - doped Poly(3-methylthiophene) (P3MT) we obtained simultaneously the paramagnetic susceptibility and. the microwave conductivity. We observed a transition from a high-temperature insulator state to a room-temperature metallic state. Around 240K. evidence of a Peierls transition is observed, but if the sample is slowly cooled, this transition is partially suppressed. DC conductivity data taken with the sample quenched to 79 K show a non-linear I-V response for very small electric fields, suggesting depinning of Charge-Density Wave (CDW). The data for heating and cooling the system above room temperature, indicate the formation of bipolarons.
Resumo:
Covalently attached benzimidazole molecules on silica gel surface, ≡SiL (where L = N-propyl-benzimidazole), adsorbs Co(ClO4)2 from non-aqueous solvent by forming a surface complex according to the reaction: m ≡SiL + Co(ClO4)2 → (≡SiL)mCo(ClO4)2. The equilibrium constant and the adsorption capacity, determined by applying the Langmuir equation were b = 3.0 × 103 L mol-1 and Ns= 0.098 × 10-3 mol g-1, respectively. The metal is bonded through the nitrogen atom and the perchlorate ion is not coordinated. The ESR study indicated that the complex has essentially an octahedral geometry with tetragonal distortion, with the electrons of the four nitrogen atoms interacting with the cobalt central metal ion in the equatorial plane. Only one complex species was detected on the surface.
Resumo:
Electron spin resonance (ESR) experiments give extremely important information concerning spin arrangements in conducting polymers. This is evidenced by the behavior of the ESR lines as a function of temperature and microwave power. Our ESR data of pressed pellets of ClO- 4 doped poly(3-methylthiophene) (P3MT) synthesized at 25 °C show the predominance of polarons. Instead, the sample prepared at 5 °C shows the predominance of bipolarons. Besides, for both types of samples, crystallization, observed from the ESR data, has shown a rearrangement of spin species.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)