834 resultados para Woolen and worsted manufacture.
Resumo:
A simplified process was worked out to prepare crude agar from red seaweeds (Gracilaria sp.). The process required careful preliminary cleaning and bleaching (sun-drying) of the weed. The agar was extracted by boiling with water in a mixture (2%) strong enough to set as a jelly. Freezing the jelly over a 3—day period in an ice-making machine, adjusted to work slowly, separated out ice and agar. The blocks were thawed out and the agar dried in the sun. The efficiency of extraction was over 800/A.
Resumo:
This paper describes a set up for a pilot plant with a capacity of 50 kg raw material per batch for the production of fish hydrolysate by enzymatic hydrolysis. Process flow sheet and complete specifications and functions of individual equipment have been described. Multifunctional equipment designed for this pilot plant set up has reduced the number of equipment considerably.
Resumo:
Rastrineobola argentea locally known as mukene in Uganda, omena in Kenya and dagaa in Tanzania occurs in Lake Nabugabo, Lake Victoria, the Upper Victoria Nileand Lake Kyoga (Greenwood 1966). While its fishery is well established on Lakes Victoria and Kyoga, the species is not yet exploited on Lake Nabugabo. Generally such smaller sized fish species as R. argentea become important commercial species in lakes where they occur when catches of preferred largersized table fish start showing signs ofdecline mostly as a result of overexploitation. With the current trends of declining fish catches on Lake Nabugabo, human exploitation of mukene on this lake is therefore just a matter of time. The species is exploited both for direct human consumption and as the protein ingredient in the manufacture of animal feeds.
Resumo:
The increasing pressure on material availability, energy prices, as well as emerging environmental legislation is leading manufacturers to adopt solutions to reduce their material and energy consumption as well as their carbon footprint, thereby becoming more sustainable. Ultimately manufacturers could potentially become zero carbon by having zero net energy demand and zero waste across the supply chain. The literature on zero carbon manufacturing and the technologies that underpin it are growing, but there is little available on how a manufacturer undertakes the transition. Additionally, the work in this area is fragmented and clustered around technologies rather than around processes that link the technologies together. There is a need to better understand material, energy, and waste process flows in a manufacturing facility from a holistic viewpoint. With knowledge of the potential flows, design methodologies can be developed to enable zero carbon manufacturing facility creation. This paper explores the challenges faced when attempting to design a zero carbon manufacturing facility. A broad scope is adopted from legislation to technology and from low waste to consuming waste. A generic material, energy, and waste flow model is developed and presented to show the material, energy, and waste inputs and outputs for the manufacturing system and the supporting facility and, importantly, how they can potentially interact. Finally the application of the flow model in industrial applications is demonstrated to select appropriate technologies and configure them in an integrated way. © 2009 IMechE.
Resumo:
Porous structures are used in orthopaedics to promote biological fixation between metal implant and host bone. In order to achieve rapid and high volumes of bone ingrowth the structures must be manufactured from a biocompatible material and possess high interconnected porosities, pore sizes between 100 and 700 microm and mechanical strengths that withstand the anticipated biomechanical loads. The challenge is to develop a manufacturing process that can cost effectively produce structures that meet these requirements. The research presented in this paper describes the development of a 'beam overlap' technique for manufacturing porous structures in commercially pure titanium using the Selective Laser Melting (SLM) rapid manufacturing technique. A candidate bone ingrowth structure (71% porosity, 440 microm mean pore diameter and 70 MPa compression strength) was produced and used to manufacture a final shape orthopaedic component. These results suggest that SLM beam overlap is a promising technique for manufacturing final shape functional bone ingrowth materials.
Resumo:
The aim of this research is to provide a unified modelling-based method to help with the evaluation of organization design and change decisions. Relevant literature regarding model-driven organization design and change is described. This helps identify the requirements for a new modelling methodology. Such a methodology is developed and described. The three phases of the developed method include the following. First, the use of CIMOSA-based multi-perspective enterprise modelling to understand and capture the most enduring characteristics of process-oriented organizations and externalize various types of requirement knowledge about any target organization. Second, the use of causal loop diagrams to identify dynamic causal impacts and effects related to the issues and constraints on the organization under study. Third, the use of simulation modelling to quantify the effects of each issue in terms of organizational performance. The design and case study application of a unified modelling method based on CIMOSA (computer integrated manufacturing open systems architecture) enterprise modelling, causal loop diagrams, and simulation modelling, is explored to illustrate its potential to support systematic organization design and change. Further application of the proposed methodology in various company and industry sectors, especially in manufacturing sectors, would be helpful to illustrate complementary uses and relative benefits and drawbacks of the methodology in different types of organization. The proposed unified modelling-based method provides a systematic way of enabling key aspects of organization design and change. The case company, its relevant data, and developed models help to explore and validate the proposed method. The application of CIMOSA-based unified modelling method and integrated application of these three modelling techniques within a single solution space constitutes an advance on previous best practice. Also, the purpose and application domain of the proposed method offers an addition to knowledge. © IMechE 2009.
Resumo:
Results are presented of systematic studies of vibration damping in steel of a type, and processed by a route, rel-evant to Caribbean steel pans. Damping is likely to be a significant factor in the variation of sound quality be-tween different pans. The main stages in pan manufac-ture are simulated in a controlled manner using sheet steel, cold-rolled to a prescribed level of thickness reduc-tion then annealed at a chosen temperature in a laboratory furnace. Small test strips were cut from the resulting material, and tested in free-free beam bending to deduce the Young’s modulus and its associated loss factor. It is shown that the steel type, the degree of cold working and the annealing temperature all have a significant influence on damping. Furthermore, for each individual specimen damping is found to decrease with rising frequency, ap-proximately following a power law. Comparison with samples cut from a real pan show that there are further influences from the pan’s geometrical details.
Resumo:
Industrial emergence is a broad and complex domain, with relevant perspectives ranging in scale from the individual entrepreneur and firm with the business decisions and actions they make to the policies of nations and global patterns of industrialisation. The research described in this article has adopted a holistic approach, based on structured mapping methods, in an attempt to depict and understand the dynamics and patterns of industrial emergence across a broad spectrum from early scientific discovery to large-scale industrialisation. The breadth of scope and application has enabled a framework and set of four tools to be developed that have wide applicability. The utility of the approaches has been demonstrated through case studies and trials in a diverse range of industrial contexts. The adoption of such a broad scope also presents substantial challenges and limitations, with these providing an opportunity for further research. © IMechE 2013.
Resumo:
Since ubiquitous technology was introduced in the early 1980s, it has rapidly developed, and been applied to various domains mainly for the improvement of human life. In this article, the authors propose that ubiquitous computing technology can be effectively used for the design and manufacturing of a product by proposing a new paradigm, called UbiDM (Design and Manufacture via Ubiquitous Computing Technology). The key aspect of UbiDM is the utilisation of the entire product lifecycle information obtained via ubiquitous computing technology for the design and manufacture of the product. The new paradigm can solve many of the problems that have not been properly handled by previous manufacturing paradigms. Specifically, it will address the concept of UbiDM by the following aspects: (1) why there is a need for UbiDM; (2) the essence of UbiDM; (3) enabling technologies; (4) application area; (5) worldwide RD status; and (6) the societal impacts of UbiDM.
Resumo:
Although cementation is a widely recognized solidification/ stabilization process for immobilisation of Intermediate Level Radioactive Waste (ILRW), the low resistance to hyperalkaline pore waters compromises the effectiveness of the process when Portland Cement (PC) is employed. Moreover the manufacture of PC is responsible for significant CO2 emissions. In this context, low pH cements are environmentally more suitable and have emerged as a potential alternative for obtaining secure waste forms. This paper summarises the achievements on development of low-pH cements and the challenges of using these new materials for the ILRW immobilisation. The performance of waste forms is also discussed in terms of radionuclides release. Reactive magnesium oxide and magnesium phosphate cements are emphasised as they feature important advantages such as consumption of available constituents for controlling acid-base reactions, reduced permeability and higher density. Additionally, in order to identify new opportunities for study, the long-term modelling approach is also briefly discussed. Copyright © 2013 by ASME.