969 resultados para Wood-decaying fungi.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ecologically important root symbionts of most terrestrial plants. Ecological studies of AMF have concentrated on differences between species; largely assuming little variability within AMF species. Although AMF are clonal, they have evolved to contain a surprisingly high within-species genetic variability, and genetically different nuclei can coexist within individual spores. These traits could potentially lead to within-population genetic variation, causing differences in physiology and symbiotic function in AMF populations, a consequence that has been largely neglected. We found highly significant genetic and phenotypic variation among isolates of a population of Glomus intraradices but relatively low total observed genetic diversity. Because we maintained the isolated population in a constant environment, phenotypic variation can be considered as variation in quantitative genetic traits. In view of the large genetic differences among isolates by randomly sampling two individual spores, <50% of the total observed population genetic diversity is represented. Adding an isolate from a distant population did not increase total observed genetic diversity. Genetic variation exceeded variation in quantitative genetic traits, indicating that selection acted on the population to retain similar traits, which might be because of the multigenomic nature of AMF, where considerable genetic redundancy could buffer the effects of changes in the genetic content of phenotypic traits. These results have direct implications for ecological research and for studying AMF genes, improving commercial AMF inoculum, and understanding evolutionary mechanisms in multigenomic organisms.
Resumo:
Formica lugubris and E paralugubris are sympatric sibling species of wood ants, both of which are widely distributed in Switzerland. Until 1996 they were considered the same species, E lugubris. To investigate whether the two species can be distinguished based on discrimination cues used by the workers we used the pupa-carrying test first introduced by Rainer Rosengren. In this test workers of discriminator colonies are faced with two kinds of pupae and their preferences for one of the types are recorded based on differential retrieval. Interspecific comparisons showed that ants preferred conspecific worker pupae to those of the sibling species regardless whether the pupae were con-colonial or hetero-colonial. Hence, this test can be used as a taxonomic tool to identify wood ants hardly distinguishable by morphological characters. In intraspecific comparisons the highly polygynous (many queens per colony) E paralugubris, the polygynous form of E lugubris and the monogynous (single queen per nest) to weakly polygynous form of E lugubris expressed different trends in their preference behaviour (with nestmate recognition in 14%, 20% and 31% of replicates, respectively). Only F paralugubris presented no significant nestmate recognition.
Effect of segregation and genetic exchange on arbuscular mycorrhizal fungi in colonization of roots.
Resumo:
ABSTRACT: BACKGROUND: Millions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans. RESULTS: 97% of the 22.5 megabase genome sequences of A. benhamiae and T. verrucosum are unambiguously alignable and collinear. To unravel dermatophyte-specific virulence-associated traits, we compared sets of potentially pathogenicity-associated proteins, such as secreted proteases and enzymes involved in secondary metabolite production, with those of closely related onygenales (Coccidioides species) and the mould Aspergillus fumigatus. The comparisons revealed expansion of several gene families in dermatophytes and disclosed the peculiarities of the dermatophyte secondary metabolite gene sets. Secretion of proteases and other hydrolytic enzymes by A. benhamiae was proven experimentally by a global secretome analysis during keratin degradation. Molecular insights into the interaction of A. benhamiae with human keratinocytes were obtained for the first time by global transcriptome profiling. Given that A. benhamiae is able to undergo mating, a detailed comparison of the genomes further unraveled the genetic basis of sexual reproduction in this species. CONCLUSIONS: Our results enlighten the genetic basis of fundamental and putatively virulence-related traits of dermatophytes, advancing future research on these medically important pathogens.
Resumo:
Social insects use multiple lines of collective defences to combat pathogens. One example of a behav- ioural group defence is the use of antimicrobial plant compounds to disinfect the nest. Indeed, wood ants collect coniferous tree resin, and the presence of resin in their nest protects them against fungal and bacterial pathogens. Many questions remain on the mechanisms of resin use, including which factors elicit resin collection and placement within nests. Here, we investigated whether the presence of brood induces Formica paralugubris workers to collect more resin, and whether the workers preferentially place resin near the brood. We also tested whether the collection and placement of resin depends on the presence of the fungal entomopathogen Beauveria bassiana. Workers brought more resin to their nest when brood was present, and preferentially placed the resin near the brood. In contrast, workers did not increase resin collection in response to exposure to B. bassiana, nor did they place resin closer to contaminated brood or contaminated areas of the nest. This lack of response may be explained by a limited effect of resin against the germination and growth of B. bassiana in vitro. Overall, our main result is that woods ants actively position resin near the brood, which probably confers prophylactic protection against other detrimental microorganisms.
Resumo:
Résumé Les champignons endomycorhiziens arbusculaires (CEA) forment des symbioses avec la plupart des plantes terrestres. Les CEA influencent la croissance des plantes et la biodiversité. Ils sont supposés avoir évolué de manière asexuée pendant au moins 400 millions d'années et aucune diversification morphologique majeure n'a été constatée. Pour ces raisons, les CEA sont considérés comme d'anciens asexués. Très peu d'espèces sont connues actuellement. Les individus de ces champignons contiennent des noyaux génétiquement différents dans un cytoplasme continu. La signification évolutive, la variabilité et la maintenance des génomes multiples au sein des individus sont inconnues. Ce travail a démontré qu'une population du CEA Glomus intraradices est génétiquement très variable. Nous avons conclu que les plantes hôtes plutôt que la différenciation géographique devraient être responsables de cette grande diversité. Puis nous avons cherché l'existence de recombinaison entre génotypes dans une population. Nous avons détecté un groupe recombinant au sein de la population, ce qui met en doute l'état d'anciens asexués des CEA. Nous avons également détecté l'occurrence de fusions d'hyphes et l'échange de noyaux entre isolats génétiquement différents. La descendance hybride issue de cet échange était viable et distincte phénotypiquement des isolats parentaux. En résumé, ce travail identifie des événements cruciaux dans le cycle de vie des CEA qui ont le potentiel d'influencer l'évolution de génomes multiples. L'étude des conséquences de ces événements sur les interactions avec les plantes hôtes pourrait éclaircir significativement la compréhension de la symbiose entre plantes et CEA. Abstract Arbuscular mycorrhizal fungi (AMF) are important symbionts of most land plants. AMF influence plant growth and biodiversity. Very few extant species are described. AMF are thought to have evolved asexually for at least 400 million years and no major morphological diversification has occurred. Due to these reasons, they were termed `ancient asexuals'. Fungal individuals harbour genetically different nuclei in a continuous cytoplasm. The variability, maintenance and evolutionary significance of multiple genomes within individuals are unknown. This work showed that a population of the AMF Glomus intraradices harbours very high genetic diversity. We concluded that host plants rather than geographic differentiation were responsible for this diversity. Furthermore, we investigated whether recombination occurred among genotypes of a G. intraradices population. The identification of a core group of recombining genotypes in the population refutes the assumption of ancient asexuality in AMF. We found that genetically different isolates can form hyphal fusions and exchange nuclei. The hybrid progeny produced by the exchange was viable and phenotypically distinct from the parental isolates. Taken together, this work provided evidence for key events in the AMF life cycle, that influence the evolution of multiple genomes. Studying the consequences of these events on the interaction with host plants may significantly further the understanding of the AMF-plant symbiosis.
Resumo:
Strepsirhines comprise 10 living or recently extinct families, ≥50% of extant primate families. Their phylogenetic relationships have been intensively studied, but common topologies have only recently emerged; e.g. all recent reconstructions link the Lepilemuridae and Cheirogaleidae. The position of the indriids, however, remains uncertain, and molecular studies have placed them as the sister to every clade except Daubentonia, the preferred sister group of morphologists. The node subtending Afro-Asian lorisids has been similarly elusive. We probed these phylogenetic inconsistencies using a test data set including 20 strepsirhine taxa and 2 outgroups represented by 3,543 mtDNA base pairs, and 43 selected morphological characters, subjecting the data to maximum parsimony, maximum likelihood and Bayesian inference analyses, and reconstructing topology and node ages jointly from the molecular data using relaxed molecular clock analyses. Our permutations yielded compatible but not identical evolutionary histories, and currently popular techniques seem unable to deal adequately with morphological data. We investigated the influence of morphological characters on tree topologies, and examined the effect of taxon sampling in two experiments: (1) we removed the molecular data only for 5 endangered Malagasy taxa to simulate 'extinction leaving a fossil record'; (2) we removed both the sequence and morphological data for these taxa. Topologies were affected more by the inclusion of morphological data only, indicating that palaeontological studies that involve inserting a partial morphological data set into a combined data matrix of extant species should be interpreted with caution. The gap of approximately 10 million years between the daubentoniid divergence and those of the other Malagasy families deserves more study. The apparently contemporaneous divergence of African and non-daubentoniid Malagasy families 40-30 million years ago may be related to regional plume-induced uplift followed by a global period of cooling and drying. © 2013 S. Karger AG, Basel.
Resumo:
Ancient asexuals directly contradict the evolutionary theories that explain why organisms should evolve a sexual life history. The mutualistic, arbuscular mycorrhizal fungi are thought to have been asexual for approximately 400 million years. In the absence of sex, highly divergent descendants of formerly allelic nucleotide sequences are thought to evolve in a genome. In mycorrhizal fungi, where individual offspring receive hundreds of nuclei from the parent, it has been hypothesized that a population of genetically different nuclei should evolve within one individual. Here we use DNA-DNA fluorescent in situ hybridization to show that genetically different nuclei co-exist in individual arbuscular mycorrhizal fungi. We also show that the population genetics techniques used in other organisms are unsuitable for detecting recombination because the assumptions and underlying processes do not fit the fungal genomic structure shown here. Instead we used a phylogenetic approach to show that the within-individual genetic variation that occurs in arbuscular mycorrhizal fungi probably evolved through accumulation of mutations in an essentially clonal genome, with some infrequent recombination events. We conclude that mycorrhizal fungi have evolved to be multi-genomic.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form extremely important mutualistic symbioses with most plants. Their role in nutrient acquisition, plant community structure, plant diversity, and ecosystem productivity and function has been demonstrated in recent years. New findings on the genetics and biology of AMF also give us a new picture of how these fungi exist in ecosystems. In this article, I bring together some recent findings that indicate that AMF have evolved to contain multiple genomes, that they connect plants together by a hyphal network, and that these different genomes may potentially move around in this network. These findings show the need for more intensive studies on AMF population biology and genetics in order to understand how they have evolved with plants, to better understand their ecological role, and for applying AMF in environmental management programs and in agriculture. A number of key features of AMF population biology have been identified for future studies and most of these concern the need to understand drift, selection, and genetic exchange in multigenomic organisms, a task that has not previously presented itself to evolutionary biologists.
Resumo:
Este fungo foi isolado pela primeira vez de lagartas de L. obliqua de uma agregação em plátano (Platanus acerifolia (Aiton) Wild - Platanaceae), em Bento Gonçalves, RS, Brasil. Após isolamento, purificação e caracterização, realizou-se um teste de patogenicidade com lagartas sadias de L. obliqua para corroborar, sua infectividade pelo postulado de Koch. Constatou-se correspondência morfológica e molecular entre o inóculo e o reisolado, comprovando sua patogenicidade a L. obliqua.
Resumo:
Mating can affect female immunity in multiple ways. On the one hand, the immune system may be activated by pathogens transmitted during mating, sperm and seminal proteins, or wounds inflicted by males. On the other hand, immune defences may also be down-regulated to reallocate resources to reproduction. Ants are interesting models to study post-mating immune regulation because queens mate early in life, store sperm for many years, and use it until their death many years later, while males typically die after mating. This long-term commitment between queens and their mates limits the opportunity for sexual conflict but raises the new constraint of long-term sperm survival. In this study, we examine experimentally the effect of mating on immunity in wood ant queens. Specifically, we compared the phenoloxidase and antibacterial activities of mated and virgin Formica paralugubris queens. Queens had reduced levels of active phenoloxidase after mating, but elevated antibacterial activity 7 days after mating. These results indicate that the process of mating, dealation and ovary activation triggers dynamic patterns of immune regulation in ant queens that probably reflect functional responses to mating and pathogen exposure that are independent of sexual conflict.
Resumo:
Abstract Arbuscular Mycorhizal Fungi (AMF) are important plant symbionts that can improve floristic diversity and ecosystem productivity. These important fungi are obligate biotrophs and form symbioses with roots of the majority of plant species, improving plant nutrient acquisition in exchange of photosynthates. AM fungi are successful both ecologically as they occupy a very large spectrum of environments as well as host range and evolutionarily, as this symbiosis is over 400 million years old. These fungi grow and reproduce clonally by hyphae and multinucleate spores. AMF are coenocytic and recent work has shown that they harbor genetically different nuclei and that AMF populations are genetically diverse. How AMF species diversity is maintained has been addressed theoretically and experimentally at the community level. Much less attention has been drawn to understand how genetic diversity is maintained within populations although closely related individuals are more likely to compete for the same resources and occupy similar niches. How infra-individual genetic diversity is shaped and maintained has received even less attention. In Chapter 2, we show that individuals from a field population may differ in their symbiotic efficiency under reduced phosphate availability: We show there is genetic variation in an AMF field population for fitness-related growth traits in response to different phosphate availability acid host species. Furthermore, AFLP fingerprints of the same individuals growing in contrasting environments diverged suggesting that the composition in nuclei of AMF is dynamical and affected by environmental factors. Thus environmental heterogeneity is likely to play an important role for the maintenance of genetic diversity at the population level. In Chapter 3 we show that single spores do not inherit necessarily the same genetic material. We have found genetic divergences using two different types of molecular marker, as well as phenotypic divergences among single spore lines. Our results stress the importance of considering these organisms as a multilevel hierarchical system and of better knowing their life cycle. They have important consequences for the understanding of AMF genetics, ecology and the development of commercial AMF inocculum. Résumé Les champignons endomycorhiziens arbusculaires (CEA) sont d'importants symbiontes pour les plantes, car ils augmentent la diversité et la productivité des écosystèmes. Ces importants symbiontes sont des biotrophes obligatoires et forment une symbiose avec la plupart des plantes terrestres. Ils améliorent l'acquisition de substances nutritives de leurs hôtes en échange de sucres obtenus par photosynthèse. Ces champignons ont un grand succès écologique, ils colonisent une grande rangée d'environnements ainsi que d'hôtes. Ils ont aussi un succès évolutif certain de part le fait que cette symbiose existe depuis plus de 400 millions d'années. Les CEA sont asexués et croissent clonalement en formant des hyphes et des spores multinuclées. Les CEA sont des coenocytes et des travaux de recherche récents ont montré qu'ils possèdent des noyaux génétiquement différents. D'autres travaux ont aussi révélé que les populations de CEA sont génétiquement diversifiées. Comment la diversité des CEA est maintenue a seulement été adressée par des études théoriques et expérimentalement au niveau des communautés. Très peu d'attention a été portée sur le maintien de la diversité génétique infra et inter populationnelle, or ce sont les individus les plus proches génétiquement qui vont entrer en compétition pour des ressources et niches similaires. La formation et le maintien de la diversité intra-individu des CEA a reçu très peu d'attention. Dans le chapitre 2, nous montrons que des individus CEA d'un même champ différent dans leur efficacité symbiotique lorsque la concentration en phosphoré est réduite. Nous montrons qu'il existe de la variance génétique dans une population de CEA provenant d'un même champ en réponse à différentes concentrations de phosphore, ainsi qu'en réponse à différentes espèces d'hôtes, et ceci pour des traits de croissance vraisemblablement liés au succès reproducteur. De plus grâce à des AFLP nous avons pu montrer que le génome de ces individus subissent des changements lorsqu'ils croissent dans des environnements contrastés. Ceci suggère que les noyaux génétiquement différents des CEA sont des entités dynamiques. Il est fort probable que l'hétérogénéité environnementale joue un rôle dans le maintien de la diversité génétique des populations de CEA. Dans le chapitre 3, nous montrons que toutes les spores d'un même mycélium parental de CEA ne reçoivent pas exactement le même contenu génétique. Nous avons mis en évidence des divergences entre des Lignées monosporales en utilisant deux types de marqueur moléculaires, ainsi que des différences phénotypiques. Nos résutats soulignent l'importance de considézer ces organismes comme dés systëmes hiérarchiques mufti-niveaux, ainsi que de mieux connaître leur cycle de vie. Nos résultats ont d'importantes conséquences pour la compréhension du système génétique des CEA, ainsi que de leur évolution, leur écológie, mais également des conséquences pour la production d' inoccultim commercial.
Resumo:
Communities of arbuscular mycorrhizal fungi (AMF) were surveyed in different South Australian ecosystems. The soil was wet-sieved for spore extraction, followed by the determination of presence and abundance of AMF species as well as the percentage of root colonization. Mycorrhizal associations were common and there was substantial fungal diversity in different ecosystems. Spores were most abundant in the permanent pasture system and less abundant under continuous wheat. The incidence of mycorrhizal associations in different plant species and the occurrence of Arum and Paris type colonization generally conformed with previous information. Spores of seventeen AMF were verified throughout seasonal changes in 1996 and 1997 in the permanent pasture and on four host species (Lolium perenne, Plantago lanceolata, Sorghum sp. and Trifolium subterraneum) , set up with the same soils under greenhouse conditions. Glomus mosseae was the dominant spore type at all sampling times and in all trap cultures. Mycorrhizal diversity was significantly affected by different sampling times in trap cultures but not in field-collected soil. P. lanceolata, Sorghum sp. and T. subterraneum as hosts for trap cultures showed no differences in richness and diversity of AMF spores that developed in association with their roots. Abundance and diversity were lowest, however, in association with L. perenne , particularly in December 1996. Results show that the combination of spore identification from field-collected soil and trap cultures is essential to study population and diversity of AMF. The study provides baseline data for ongoing monitoring of mycorrhizal populations using conventional methods and material for the determination of the symbiotic effectiveness of AMF key members.