962 resultados para Wood - Juvenile and mature
Resumo:
This work studies the impact of two traditional Romanian treatments, Red Petroleum and Propolis, in terms of real efficiency and consequence on the wooden artifacts. The application of these solutions is still a widely adopted and popular technique in preservative conservation but the impact of these solutions is not well known. It is important to know the effect of treatments on chemical-physical and structural characteristics of the artifacts, not only for understanding the influence on present conditions but also for foreseeing the future behavior. These treatments with Romanian traditional products are compared with a commercial antifungal product, Biotin R, which is utilized as reference to control the effectiveness of Red Petroleum and Propolis. Red Petroleum and Propolis are not active against mould while Biotin R is very active. Mould attack is mostly concentrated in the painted layer, where the tempera, containing glue and egg, enhance nutrition availability for moulds. Biotin R, even if is not a real insecticide but a fungicide, was the most active product against insect attack of the three products, followed by Red Petroleum, Propolis and untreated reference. As for colour, it did not change so much after the application of Red Petroleum and Biotin R and the colour difference was almost not perceptible. On the contrary, Propolis affected the colour a lot. During the exposure at different RH, the colour changes significantly at 100% RH at equilibrium and this is mainly due to the mould attack. Red Petroleum penetrates deeply into wood, while Propolis does not penetrate and remains only on the surface. However, Red Petroleum does not interact chemically with wood substance and it is easy volatilized in oven-dry condition. On the contrary Propolis interacts chemically with wood substance and hardly volatilized, even in oven-dry condition and consequently Propolis remains where it penetrated, mostly on the surface. Treatment by immersion has impact on wood physical parameters while treatment by brushing does not have significant impact. Especially Red Petroleum has an apparent impact on moisture content (MC) due to the penetration of solution, while Propolis does not penetrate so much and remains only on surface therefore Propolis does not have so much impact as Red Petroleum. However, if the weight of the solution penetrated in wood is eliminated, there is not significant difference in MC between treated and untreated samples. Considering physical parameters, dimensional stability is an important parameter. The variation of wood moisture content causes shrinkages/swelling of the wood that polychrome layer can only partially follow. The dimension of wooden supports varied under different moisture conditioning; the painted layer cannot completely follow this deformation, and consequently a degradation and deterioration caused by detachment, occurs. That detachment affects the polychrome stratification of the panel painting and eventually the connections between the different layer compositions of the panel painting.
Resumo:
Die Vegetation ist die wichtigste Quelle von organischen flüchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphäre haben. VOCs beeinflussen die oxidative Kapazität der Atmosphäre und tragen zu der Bildung und zum Wachstum von sekundären organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken beteiligen. Ziel dieser Arbeit war die Beschreibung und der Vergleich von VOC Emissionen aus Pflanzen aus zwei verschiedenen Ökosystemen: Mediterranes Ökosystem und Tropisches Ökosystem. Für diese Aufgabe wurden gewöhnliche Pflanzen von beiden Ökosystemen untersucht. Siebzehn Pflanzenspezies aus der Mittelmeergebiet, welches bekannt ist für seine Vielfalt an VOC emittierenden Pflanzen, wurden in die Untersuchungen einbezogen. Im Gegensatz zum mediterranen Ökosystem sind nur wenig Information verfügbar über VOC Emissionen aus Blättern tropischer Baumspezies. Vor diesem Hintergrund wurden sechsundzwanzig Baumspezies aus verschiedenen Ökotypen des Amazonasbeckens (Terra firme, Várzea und Igapó) wurden auf VOC Emissionen auf Blattebene mit einem Küvetten-System untersucht. Analysen von flüchtigen organischen Verbindungen wurden online mit PTR-MS und offline mittels Sammlung auf entsprechenden Adsorbern (Kartuschen) und nachfolgender GC-FID Analyse untersucht. Die höchsten Emissionen wurden für Isoprene beobachtete, gefolgt durch Monoterpene, Methanol und Aceton. Die meisten Mittelmeer Spezies emittierten eine hohe Vielfalt an Monoterpenspezies, hingegen zeigten nur fünf tropische Pflanzenspezies eine Monoterpene mit einen sehr konservativen Emissionsprofil (α-Pinen>Limonen>Sabinen >ß-Pinen). Mittelmeerpflanzen zeigten zusätzlich Emissionen von Sesquiterpenen, während bei der Pflanzen des Amazonas Beckens keine Sesquiterpenemissionen gefunden wurden. Dieser letzte Befund könnte aber auch durch eine niedrigere Sensitivität des Messsystems während der Arbeiten im Amazonasgebiet erklärt werden. Zusätzlich zu den Isoprenoidemissionen waren Methanolemissionen als Indikator für Wachtumsvorgänge sehr verbreitet in den meisten Pflanzenspezies aus tropischen und mediterranen Gebieten. Einige Pflanzenspezies beider Ökosystemen zeigten Acetonemissionen. rnrnVOC Emissionen werde durch eine große Vielfalt an biotischen und abiotischen Faktoren wie Lichtintensität, Temperatur, CO2 und Trockenheit beeinflusst. Ein anderer, öfter übersehener Faktor, der aber sehr wichtig ist für das Amazonas Becken, ist die regelmäßige Überflutung. In dieser Untersuchung wir fanden heraus, dass am Anfang einer Wurzelanoxie, die durch die Überflutung verursacht wurde, Ethanol und Acetaldehyd emittiert werden können, vor allem in Pflanzenspezies, die schlechter an eine unzureichende Sauerstoffversorgung bei Flutung adaptiert sind, wie z.B. Vatairea guianensis. Die Spezies Hevea spruceana, welche besser an Überflutung adaptiert ist, könnte möglicherweise der gebildete Ethanol sofort remetabolisieren ohne es zu emittieren. Nach einer langen Periode einer Überflutung konnte allerdings keine Emission mehr beobachtet werden, was auf eine vollständige Adaptation mit zunehmender Dauer schließen lässt. Als Reaktion auf den ausgelösten Stress können Isoprenoidemissionen ebenfalls kurzfristig nach einigen Tage an Überflutung zunehmen, fallen dann aber dann nach einer langen Periode zusammen mit der Photosynthese, Transpiration und stomatäre Leitfähigkeit deutlich ab.rnrnPflanzen Ontogenese ist anscheinend von Bedeutung für die Qualität und Quantität von VOC Emissionen. Aus diesem Grund wurden junge und erwachsene Blätter einiger gut charakterisierten Pflanzen Spezies aus dem Mittelmeerraum auf VOC Emissionen untersucht. Standard Emissionsfaktoren von Isopren waren niedriger in jungen Blättern als in erwachsene Blätter. Hingegen wurden höhere Monoterpen- und Sesquiterpenemissionen in jungen Blätter einiger Pflanzenspezies gefunden. Dieser Befund deutet auf eine potentielle Rolle dieser VOCs als Abwehrkomponenten gegen Pflanzenfresser oder Pathogene bei jungen Blätter hin. In einigen Fällen variierte auch die Zusammensetzung der Monoterpen- und Sesquiterpenspezies bei jungen und erwachsenen Blättern. Methanolemissionen waren, wie erwartet, höher in jungen Blättern als in ausgewachsenen Blättern, was mit der Demethylierung von Pectin bei der Zellwandreifung erklärt werden kann. Diese Befunde zu Änderungen der Emissionskapazität der Vegetation können für zukünftige Modellierungen herangezogen werden. rn
Resumo:
Sweet sorghum, a C4 crop of tropical origin, is gaining momentum as a multipurpose feedstock to tackle the growing environmental, food and energy security demands. Under temperate climates sweet sorghum is considered as a potential bioethanol feedstock, however, being a relatively new crop in such areas its physiological and metabolic adaptability has to be evaluated; especially to the more frequent and severe drought spells occurring throughout the growing season and to the cold temperatures during the establishment period of the crop. The objective of this thesis was to evaluate some adaptive photosynthetic traits of sweet sorghum to drought and cold stress, both under field and controlled conditions. To meet such goal, a series of experiments were carried out. A new cold-tolerant sweet sorghum genotype was sown in rhizotrons of 1 m3 in order to evaluate its tolerance to progressive drought until plant death at young and mature stages. Young plants were able to retain high photosynthetic rate for 10 days longer than mature plants. Such response was associated to the efficient PSII down-regulation capacity mediated by light energy dissipation, closure of reaction centers (JIP-test parameters), and accumulation of glucose and sucrose. On the other hand, when sweet sorghum plants went into blooming stage, neither energy dissipation nor sugar accumulation counteracted the negative effect of drought. Two hybrids with contrastable cold tolerance, selected from an early sowing field trial were subjected to chilling temperatures under controlled growth conditions to evaluate in deep their physiological and metabolic cold adaptation mechanisms. The hybrid which poorly performed under field conditions (ICSSH31), showed earlier metabolic changes (Chl a + b, xanthophyll cycle) and greater inhibition of enzymatic activity (Rubisco and PEPcase activity) than the cold tolerant hybrid (Bulldozer). Important insights on the potential adaptability of sweet sorghum to temperate climates are given.
Resumo:
BACKGROUND: Tuberculosis (TB) is a common diagnosis in human immunodeficiency virus (HIV) infected patients on antiretroviral treatment (ART). OBJECTIVE: To describe TB-related practices in ART programmes in lower-income countries and identify risk factors for TB in the first year of ART. METHODS: Programme characteristics were assessed using standardised electronic questionnaire. Patient data from 2003 to 2008 were analysed and incidence rate ratios (IRRs) calculated using Poisson regression models. RESULTS: Fifteen ART programmes in 12 countries in Africa, South America and Asia were included. Chest X-ray, sputum microscopy and culture were available free of charge in respectively 13 (86.7%), 14 (93.3%) and eight (53.3%) programmes. Eight sites (53.3%) used directly observed treatment and five (33.3%) routinely administered isoniazid preventive treatment (IPT). A total of 19 413 patients aged ≥16 years contributed 13 227 person-years of follow-up; 1081 new TB events were diagnosed. Risk factors included CD4 cell count (>350 cells/μl vs. <25 cells/μl, adjusted IRR 0.46, 95%CI 0.33–0.64, P < 0.0001), sex (women vs. men, adjusted IRR 0.77, 95%CI 0.68–0.88, P = 0.0001) and use of IPT (IRR 0.24, 95%CI 0.19–0.31, P < 0.0001). CONCLUSIONS: Diagnostic capacity and practices vary widely across ART programmes. IPT prevented TB, but was used in few programmes. More efforts are needed to reduce the burden of TB in HIV co-infected patients in lower income countries.
Resumo:
A considerable portion of public lands in the United States is at risk of uncharacteristically severe wildfires due to a history of fire suppression. Wildfires already have detrimental impacts on the landscape and on communities in the wildland-urban interface (WUI) due to unnatural and overstocked forests. Strategies to mitigate wildfire risk include mechanical thinning and prescribed burning in areas with high wildfire risk. The material removed is often of little or no economic value. Woody biomass utilization (WBU) could offset the costs of hazardous fuel treatments if removed material could be used for wood products, heat, or electricity production. However, barriers due to transportation costs, removal costs, and physical constraints (such as steep slopes) hinder woody biomass utilization. Various federal and state policies attempt to overcome these barriers. WBU has the potential to aid in wildfire mitigation and meet growing state mandates for renewable energy. This research utilizes interview data from individuals involved with on-the-ground woody biomass removal and utilization to determine how federal and state policies influence woody biomass utilization. Results suggest that there is not one over-arching policy that hinders or promotes woody biomass utilization, but rather woody biomass utilization is hindered by organizational constraints related to time, cost, and quality of land management agencies’ actions. However, the use of stewardship contracting (a hybrid timber sale and service contract) shows promise for increased WBU, especially in states with favorable tax policies and renewable energy mandates. Policy recommendations to promote WBU include renewal of stewardship contracting legislations and a re-evaluation of land cover types suited for WBU. Potential future policies to consider include the indirect role of carbon dioxide emission reduction activities to promote wood energy and future impacts of air quality regulations.
Resumo:
Nitric oxide (NO) and Reelin both modulate neuronal plasticity in developing and mature synaptic networks. We recently showed a loss of neuronal nitric oxide synthase (nNOS) protein in the olfactory bulb of reeler mutants and advanced the hypothesis that the Reelin and NO signalling pathways may influence each other. We now studied the distribution of NO sensitive guanylyl cyclase (NOsGC), Reelin and its receptor Apolipoprotein E2 (ApoEr2) in the olfactory bulb by multiple fluorescence labelling and tested whether nNOS and ApoEr2 colocalize in this area. We also essayed the protein content of NOsGC in the reeler olfactory bulb and tested whether there are any changes in nNOS and NOsGC protein in other reeler brain areas. Olfactory bulb interneurons expressing ApoEr2 and nNOS are only few in the glomerular layer but represent the large majority of granule cell layer interneurons. Conversely, NOsGC interneurons are rare in the granule cell layer and abundant as periglomerular cells. Reelin containing periglomerular cells almost entirely belong to the NOsGC subset. These data further support the hypothesis of a reciprocal signalling between Reelin/NOsGC and ApoEr2/nNOS expressing neurons to affect olfactory bulb activity. We also show that a significant rise in NOsGC content accompanies the decrease of nNOS protein in the reeler olfactory bulb. The same reciprocal changes present in the cortex/striatum and the hippocampus of reeler mice. Thus, the influence that the deficit of extracellular Reelin seems to exert on nNOS and its receptor is not limited to the olfactory bulb but is a general feature of the reeler brain.
Resumo:
Auxin is a key regulator in plant growth and development. This dissertation examines the role of auxin and polar auxin transport in woody growth and development. Strategies of promoter reporter system, microarray expression analysis, transgenic modification, physiological assays, anatomical analysis, and histochemical/biochemical assays were employed to improve our understanding of auxin study in Populus. The results demonstrate various aspects of auxin regulation on shoot growth, root development, wood formation, and gravitropism in woody tissues. We describe the behavior of the DR5 reporter system for measuring auxin concentrations and response in stably transformed Populus trees. Our study shows that DR5 reporter system can be efficiently used in Populus to study auxin biology at a cellular resolution. We investigated the global gene expression in responding to auxin in Populus root. The results revealed groups of IBA up- and down- regulated genes involved in various biological processes including cell wall modification, root growth and lateral root formation, transporter activity and hormone crosstalk. We also verify two of the identified genes' function by transgenic modification in Populus, which encode auxin efflux carrier PtPIN9 and transcription factor PtERF72. We investigated the role of PtPIN9 in woody growth and development, especially in wood formation and gravitropic response in woody stem. We found that overexpressing PtPIN9 enhanced several growth parameters while suppression of PtPIN9 has inhibited tension wood formation. Our results show that PIN9 and other members from PIN family could be possible useful tools for increasing biomass productivity, wood quality, or in modifying plant form.
Resumo:
Only a few sites in the Alps have produced archaeological finds from melting ice. To date, prehistoric finds from four sites dating from the Neolithic period, the Bronze Age, and the Iron Age have been recovered from small ice patches (Schnidejoch, Lötschenpass, Tisenjoch, and Gemsbichl/Rieserferner). Glaciers, on the other hand, have yielded historic finds and frozen human remains that are not more than a few hundred years old (three glacier mummies from the 16th to the 19th century and military finds from World Wars I and II). Between 2003 and 2010, numerous archaeological finds were recovered from a melting ice patch on the Schnidejoch in the Bernese Alps (Cantons of Berne and Valais, Switzerland). These finds date from the Neolithic period, the Early Bronze Age, the Iron Age, Roman times, and the Middle Ages, spanning a period of 6000 years. The Schnidejoch, at an altitude of 2756 m asl, is a pass in the Wildhorn region of the western Bernese Alps. It has yielded some of the earliest evidence of Neolithic human activity at high altitude in the Alps. The abundant assemblage of finds contains a number of unique artifacts, mainly from organic materials like leather, wood, bark, and fibers. The site clearly proves access to high-mountain areas as early as the 5th millennium BC, and the chronological distribution of the finds indicates that the Schnidejoch pass was used mainly during periods when glaciers were retreating.
Resumo:
The immuno-regulatory functions displayed by NK and iNKT cells have highlighted their importance as key lymphocytes involved in innate and adaptive immunity. Therefore, understanding the dynamics influencing the generation of NK and iNKT cells is extremely important. IL-15 has been shown to provide a critical signal throughout the development and homeostasis of NK and iNKT cells; however, the cellular source of IL-15 has remained unclear. In this investigation, I provide evidence that the cell-type providing IL-15 to NK and iNKT cells via trans-presentation is determined by the tissue site and the maturation status of NK and iNKT cells. For NK cells, I revealed the non-hematopoietic compartment provides IL-15 to NK cells in the early stages of development while hematopoietic cells were crucial for the generation and maintenance of mature NK cells. Regarding iNKT cells in the thymus, IL-15 trans-presentation by non-hematopoietic cells was crucial for the survival of mature iNKT cells. In the liver, both hematopoietic and non-hematopoietic compartments provided IL-15 to both immature and mature iNKT cells. This IL-15 signal helped mediate the survival and proliferation of both NK and iNKT cells as well as induce the functional maturation of mature iNKT cells via enhanced T-bet expression. In conclusion, my work illustrates an important notion that the immunological niche of NK and iNKT cells is tightly regulated and that this regulation is meticulously influenced by the tissue microenvironment.
Resumo:
The technical definition of ‘wood’ is well accepted, but its botanical understanding remains vague. Different degrees and amounts of lignification in plants and their imprecise description, together with a conceptually doubtful life form catalog including trees, shrubs and herbs further complicate our understanding of ‘wood’. Here, we use permanent micro sections to demonstrate that the xylem and bark of terrestrial plants can vary from one tissue with a few lignified cells to an almost fully lignified tissue. This universal principle of plant growth and stabilization, accounting for all taxonomic units within vascular plants, suggests that the classical life form separation into herbs, shrubs and trees is not valid. An anatomical-based differentiation between ‘wood’, ‘woody’ and ‘woodiness’ is also only meaningful if supplemented by insight on the particular plant section and its lignified proportion. We therefore recommend utilizing the botanically more neutral term ‘stem anatomy’ instead of ‘wood anatomy’, which further implies integration of the xylem and bark of all terrestrial plants. Since dendrochronology considers shrubs, dwarf shrubs and perennial herbs in addition to trees, its semantic expansion toward ‘xylemchronology’ might be worthwhile considering.
Resumo:
Many of the tumorigenic effects that result from neonatal exposure to both natural and synthetic estrogens resemble those found in humans exposed to diethylstilbestrol (DES) in utero. Using this established DES neonatal mouse model, my goal was to investigate long-term molecular and morphological effects of certain polychlorinated biphenyls (PCBs) that are weakly estrogenic in adult mice. Focusing on the cervicovaginal (CV) tract, since this is where tumors develop in the BALB/c mouse, I first assessed the 17β-estradiol (E2) dose-response for expression of lactoferrin (LTF). LTF is a highly inducible estrogen biomarker that is permanently altered in uteri from neonatally treated mice. Treatments were administered via 5 subcutaneous injections beginning within 16 hrs after birth, days 1–5. ^ The ontogeny of LTF expression from mouse CV tracts was determined by examining three different stages of life: pups, immature, and mature mice. Northern RNA analysis and immunohistochemistry showed that neonatal E 2 treatment both increases and decreases LTF expression. Early expression of LTF in the CV tract at all doses occurred in pups. In both immature and adult mice, increased LTF expression was dependent on whether E2 induced ovary-dependent or ovary-independent persistent vaginal cornification. ^ Next, I studied biological responses from neonatally PCB exposed adult mice. As expected, using a neonatal uterine bioassay I showed that 2 ′4′6′-trichloro-4-biphenylol (OH-PCB-30), 2′3′4′ 5-tetrachloro-4-biphenyloI (OH-PCB-61), and OH-PCB-30/61 (50/50 mixture), were estrogenic causing a dose-dependent increase in uterine weight. ^ Long-term effects of OH-PCB 30 [200 μg/pup/day] were most similar to E2 as seen by an increased uterine wet weight in day 50 mice similar to E2 [5 μg/pup/day] (141% and 140% of control, respectively). Another similarity between OH-PCB 30 and E2 neonatally treated mice was found in those sacrificed at 20 months of age. At these same doses CV tract squamous cell carcinoma induction was 43% of E2 treated mice and 47% of OH-PCB 30 treated mice. Differences were noted in adenoaquamous; cell carcinoma development, where 16% of OH-PCB-30 neonatally treated mice developed tumors versus 8% for E2. Based on these results using the neonatal mouse model, I conclude that the OH-PCBs tested are strongly estrogenic and tumorigenic showing dose-response relationships when exposure occurs during development of the reproductive tract in mice. These results may have important implications for risk assessment in determining the effects of xenoestrogens exposure early versus later in life. ^
Resumo:
Two murine leukemia viruses (MuLVs), Rauscher (R-MuLV) and Moloney (Mo-MuLV) MuLVs, were studied to identify the biosynthetic pathways leading to the generation of mature virion proteins. Emphasis was placed on the examination of the clone 1 Mo-MuLV infected cell system.^ At least three genetic loci vital to virion replication exist on the MuLV genome. The 'gag' gene encodes information for the virion core proteins. The 'pol' gene specifies information for the RNA-dependent-DNA-polymerase (pol), or reverse transcriptase (RT). The 'env' gene contains information for the virion envelope proteins.^ MuLV specified proteins were synthesized by way of precursor polyproteins, which were processed to yield mature virion proteins. Pulse-chase kinetic studies, radioimmunoprecipitation, and peptide mapping were the techniques used to identify and characterize the MuLV viral precursor polyproteins and mature virion proteins.^ The 'gag' gene of Mo-MuLV coded for two primary gene products. One 'gag' gene product was found to be a polyprotein of 65,000 daltons M(,r) (Pr65('gag)). Pr65('gag) contained the antigenic and structural determinants of all four viral core proteins--p30, p15, pp12 and p10. Pr65('gag) was the major intracellular precursor polyprotein in the generation of mature viral core proteins. The second 'gag' gene product was a glycosylated gene product (gPr('gag)). An 85,000 dalton M(,r) polyprotein (gPr85('gag)) and an 80,000 dalton M(,r) (gPr80('gag)) polyprotein were the products of the 'gag' genes of Mo-MuLV and R-MuLV, respectively. gPr('gag) contained the antigenic and structural determinants of the four virion core proteins. In addition, gPr('gag) contained peptide information over and above that of Pr65('gag). Pulse-chase kinetic studies in the presence of tunicamycin revealed a separate processing pathway of gPr('gag) that did not seem to involve the generation of mature virion core proteins. Subglycosylated gPr('gag) was found to have a molecular weight of 75,000 daltons (Pr75('gag)) for both Mo-MuLV and R-MuLV.^ The Mo-MuLV 'pol' gene product was initially synthesized as a read-through 'gag-pol' intracellular polyprotein containing both antigenic and structural determinants of both the 'gag' and 'pol' genes. This read-through polyprotein was found to be a closely spaced doublet of two similarly sized proteins at 220-200,000 daltons M(,r) (Pr220/200('gag-pol)). Pulse-chase kinetic studies revealed processing of Pr220/200('gag-pol) to unstable intermediate intracellular proteins of 145,000 (Pr145('pol)), 135,000 (Pr135('pol)), and 125,000 (Pr125('pol)) daltons M(,r). Further chase incubations demonstrated the appearance of an 80,000 dalton M(,r) protein, which represented the mature polymerase (p80('pol)).^ The primary intracellular Mo-MuLV 'env' gene product was found to be a glycosylated polyprotein of 83,000 daltons M(,r) (gPr83('env)). gPr83('env) contained the antigenic and structural determinants of both mature virion envelope proteins, gp70 and p15E. In addition, gPr83('env) contained unique peptide sequences not present in either gp70 or p15E. The subglycosylated form of gPr83('env) had a molecular weight of 62,000 daltons (Pr62('env)).^ Virion core proteins of R-MuLV and Mo-MuLV were examined. Structural homology was observed betwen p30s and p10s. Significant structural non-homology was demonstrated between p15s and pp12s. ^
Resumo:
To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/ genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalve Mytilus edulis (Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adult M. edulis bivalves cultured in this study, and previously by Wanamaker et al. (2006), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species-specific paleotemperature equation for the bivalve M. edulis [T degrees C = 16.28 (+/- 0.10) -4.57 (+/- 0.15) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW} + 0.06 (+/- 0.06) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW}(2); r(2) = 0.99; N = 323; p < 0.0001]. Compared to the Kim and O'Neil (1997) inorganic calcite equation, M. edulis deposits its shell in isotope equilibrium (delta(18)O(calcite)) with ambient water. Carbon isotopes (delta(13)C(calcite)) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, and delta(13)C(calcite) disequilibrium increased with increasing salinity. Sampled shells of M. edulis showed no significant trends in delta(18)O(calcite) based on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affect delta(18)O(calcite) in M. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean.
Resumo:
To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/ genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalve Mytilus edulis (Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adult M. edulis bivalves cultured in this study, and previously by Wanamaker et al. (2006), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species-specific paleotemperature equation for the bivalve M. edulis [T degrees C = 16.28 (+/- 0.10) -4.57 (+/- 0.15) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW} + 0.06 (+/- 0.06) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW}(2); r(2) = 0.99; N = 323; p < 0.0001]. Compared to the Kim and O'Neil (1997) inorganic calcite equation, M. edulis deposits its shell in isotope equilibrium (delta(18)O(calcite)) with ambient water. Carbon isotopes (delta(13)C(calcite)) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, and delta(13)C(calcite) disequilibrium increased with increasing salinity. Sampled shells of M. edulis showed no significant trends in delta(18)O(calcite) based on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affect delta(18)O(calcite) in M. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean.
Resumo:
The protection and sustainable management of forest carbon stocks, particularly in the tropics, is a key factor in the mitigation of global change effects. However, our knowledge of how land use and elevation affect carbon stocks in tropical ecosystems is very limited. We compared aboveground biomass of trees, shrubs and herbs for eleven natural and human-influenced habitat types occurring over a wide elevation gradient (866–4550 m) at the world's highest solitary mountain, Mount Kilimanjaro. Thanks to the enormous elevation gradient, we covered important natural habitat types, e.g., savanna woodlands, montane rainforest and afro-alpine vegetation, as well as important land-use types such as maize fields, grasslands, traditional home gardens, coffee plantations and selectively logged forest. To assess tree and shrub biomass with pantropical allometric equations, we measured tree height, diameter at breast height and wood density and to assess herbaceous biomass, we sampled destructively. Among natural habitats, tree biomass was highest at intermediate elevation in the montane zone (340 Mg ha−1), shrub biomass declined linearly from 7 Mg ha−1 at 900 m to zero above 4000 m, and, inverse to tree biomass, herbaceous biomass was lower at mid-elevations (1 Mg ha−1) than in savannas (900 m, 3 Mg ha−1) or alpine vegetation (above 4000 m, 6 Mg ha−1). While the various land-use types dramatically decreased woody biomass at all elevations, though to various degrees, herbaceous biomass was typically increased. Our study highlights tropical montane forest biomass as important aboveground carbon stock and quantifies the extent of the strong aboveground biomass reductions by the major land-use types, common to East Africa. Further, it shows that elevation and land use differently affect different vegetation strata, and thus the matrix for other organisms.