884 resultados para White-rot fungi
Resumo:
In the present study, we analyzed 58 samples of the lesser white-toothed shrew group (Crocidura suaveolens) from eastern Europe and Turkey, where, according to previous publications, three different mitochondrial and nuclear lineages are present. We sequenced 799 bp of the nuclear BRCA1 gene and 400 bp of the mitochondrial cytochrome b gene to: (1) determine a potential contact zone between the lineages; (2) detect hybridizations and introgressions between them; and (3) comment on the level of reproductive isolation of the different lineages. We revealed two zones of hybridization in Turkey, of which the first occurred west of the Bosphorus Straits (three hybrids) and the second in Anatolia (twelve hybrids). In the latter, the nuclear markers revealed a large zone of hybridization, of approximately 600 km. It also revealed that hybrids of first, second, and later generations are present within the populations, and therefore that the reproductive isolation between the different lineages is weak.
Resumo:
This paper empirically studies the effects of service offshoring on white-collar employment, using data for more than one hundred U.S. occupations. A model of firm behavior based on separability allows to derive the labor demand elasticity with respect to service offshoring for each occupation. Estimation is performed with Quasi-Maximum Likelihood, to account for high degrees of censoring in the employment variable. The estimated elasticities are then related to proxies for the skill level and the degree of tradability of the occupations. Results show that service offshoring increases high skilled employment and decreases medium and low skilled employment. Within each skill group, however, service offshoring penalizes tradable occupations and benefits non-tradable occupations.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ancient asexually reproducing organisms that form symbioses with the majority of plant species, improving plant nutrition and promoting plant diversity. Little is known about the evolution or organization of the genomes of any eukaryotic symbiont or ancient asexual organism. Direct evidence shows that one AMF species is heterokaryotic; that is, containing populations of genetically different nuclei. It has been suggested, however, that the genetic variation passed from generation to generation in AMF is simply due to multiple chromosome sets (that is, high ploidy). Here we show that previously documented genetic variation in Pol-like sequences, which are passed from generation to generation, cannot be due to either high ploidy or repeated gene duplications. Our results provide the clearest evidence so far for substantial genetic differences among nuclei in AMF. We also show that even AMF with a very large nuclear DNA content are haploid. An underlying principle of evolutionary theory is that an individual passes on one or half of its genome to each of its progeny. The coexistence of a population of many genomes in AMF and their transfer to subsequent generations, therefore, has far-reaching consequences for understanding genome evolution.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are symbiotic soil fungi that are intimately associated with the roots of the majority of land plants. They colonise the interior of the roots and the hyphae extend into the soil. It is well known that bacterial colonisation of the rhizosphere can be crucial for many pathogenic as well as symbiotic plant-microbe interactions. However, although bacteria colonising the extraradical AMF hyphae (the hyphosphere) might be equally important for AMF symbiosis, little is known regarding which bacterial species would colonise AMF hyphae. In this study, we investigated which bacterial communities might be associated with AMF hyphae. As bacterial-hyphal attachment is extremely difficult to study in situ, we designed a system to grow AMF hyphae of Glomus intraradices and Glomus proliferum and studied which bacteria separated from an agricultural soil specifically attach to the hyphae. Characterisation of attached and non-attached bacterial communities was performed using terminal restriction fragment length polymorphism and clone library sequencing of 16S ribosomal RNA (rRNA) gene fragments. For all experiments, the composition of hyphal attached bacterial communities was different from the non-attached communities, and was also different from bacterial communities that had attached to glass wool (a non-living substratum). Analysis of amplified 16S rRNA genes indicated that in particular bacteria from the family of Oxalobacteraceae were highly abundant on AMF hyphae, suggesting that they may have developed specific interactions with the fungi.
Resumo:
Reports of natural infections of sylvatic carnivores by adult worms of species similar to Lagochilascaris minor in the Neotropical region led to attempts to estabilish experimental cycles in laboratory mice and in cats. Also, larval development was seen in the skeletal muscle of an agouti (Dasyprocta leporina) infected per os with incubated eggs of the parasite obtained from a human case. In cats, adult worms develop and fertile eggs are expelled in the feces: in mice, larval stages of the parasite develop, and are encapsulate in the skeletal muscle, and in the adipose and subcutaneous connective tissue. From our observations, we conclude that the larva infective for the mouse is the early 3rd stage, while for the final host the infective form is the later 3rd stage. A single moult was seen in the mouse, giving rise to a small population of 4th stage larvae, long after the initial infection.
Resumo:
BACKGROUND: Antiretroviral compounds have been predominantly studied in human immunodeficiency virus type 1 (HIV-1) subtype B, but only ~10% of infections worldwide are caused by this subtype. The analysis of the impact of different HIV subtypes on treatment outcome is important. METHODS: The effect of HIV-1 subtype B and non-B on the time to virological failure while taking combination antiretroviral therapy (cART) was analyzed. Other studies that have addressed this question were limited by the strong correlation between subtype and ethnicity. Our analysis was restricted to white patients from the Swiss HIV Cohort Study who started cART between 1996 and 2009. Cox regression models were performed; adjusted for age, sex, transmission category, first cART, baseline CD4 cell counts, and HIV RNA levels; and stratified for previous mono/dual nucleoside reverse-transcriptase inhibitor treatment. RESULTS: Included in our study were 4729 patients infected with subtype B and 539 with non-B subtypes. The most prevalent non-B subtypes were CRF02_AG (23.8%), A (23.4%), C (12.8%), and CRF01_AE (12.6%). The incidence of virological failure was higher in patients with subtype B (4.3 failures/100 person-years; 95% confidence interval [CI], 4.0-4.5]) compared with non-B (1.8 failures/100 person-years; 95% CI, 1.4-2.4). Cox regression models confirmed that patients infected with non-B subtypes had a lower risk of virological failure than those infected with subtype B (univariable hazard ratio [HR], 0.39 [95% CI, .30-.52; P < .001]; multivariable HR, 0.68 [95% CI, .51-.91; P = .009]). In particular, subtypes A and CRF02_AG revealed improved outcomes (multivariable HR, 0.54 [95% CI, .29-.98] and 0.39 [95% CI, .19-.79], respectively). CONCLUSIONS: Improved virological outcomes among patients infected with non-B subtypes invalidate concerns that these individuals are at a disadvantage because drugs have been designed primarily for subtype B infections.
Resumo:
In an attempt to isolate Paracoccidioides brasiliensis from nature 887 samples of soil from Botucatu, SP, Brazil, were collected cultured in brain heart infusion agar supplemented with dextrose, in potato dextrose agar and in yeast extract starch dextrose agar, all with antibiotics, at 25º and 37ºC. Five thermo-dependent dimorphic fungi morphologically resembling P. brasiliensis were isolated; two from armadillo holes; further studies of the biology, antigenicity and genetic features of the five dimorphic fungi are necessary to clarify their taxonomy and their possible relation to P. brasiliensis. In addition, 98 dematiaceous fungi and 581 different species of Aspergillus spp. were also isolated. Our findings emphasize that armadillos and their environment are associated with thermo-dimorphic fungi and confirm the ubiquity of pathogenic dematiaceous fungi and Aspergillus spp.
Resumo:
From toddler to late teenager, the macroscopic pattern of axonal projections in the human brain remains largely unchanged while undergoing dramatic functional modifications that lead to network refinement. These functional modifications are mediated by increasing myelination and changes in axonal diameter and synaptic density, as well as changes in neurochemical mediators. Here we explore the contribution of white matter maturation to the development of connectivity between ages 2 and 18 y using high b-value diffusion MRI tractography and connectivity analysis. We measured changes in connection efficacy as the inverse of the average diffusivity along a fiber tract. We observed significant refinement in specific metrics of network topology, including a significant increase in node strength and efficiency along with a decrease in clustering. Major structural modules and hubs were in place by 2 y of age, and they continued to strengthen their profile during subsequent development. Recording resting-state functional MRI from a subset of subjects, we confirmed a positive correlation between structural and functional connectivity, and in addition observed that this relationship strengthened with age. Continuously increasing integration and decreasing segregation of structural connectivity with age suggests that network refinement mediated by white matter maturation promotes increased global efficiency. In addition, the strengthening of the correlation between structural and functional connectivity with age suggests that white matter connectivity in combination with other factors, such as differential modulation of axonal diameter and myelin thickness, that are partially captured by inverse average diffusivity, play an increasingly important role in creating brain-wide coherence and synchrony.
Resumo:
Self-incompatibility (SI), a reproductive system broadly present in plants, chordates, fungi, and protists, might be controlled by one or several multiallelic loci. How a transition in the number of SI loci can occur and the consequences of such events for the population's genetics and dynamics have not been studied theoretically. Here, we provide analytical descriptions of two transition mechanisms: linkage of the two SI loci (scenario 1) and the loss of function of one incompatibility gene within a mating type of a population with two SI loci (scenario 2). We show that invasion of populations by the new mating type form depends on whether the fitness of the new type is lowered, and on the allelic diversity of the SI loci and the recombination between the two SI loci in the starting population. Moreover, under scenario 1, it also depends on the frequency of the SI alleles that became linked. We demonstrate that, following invasion, complete transitions in the reproductive system occurs under scenario 2 and is predicted only for small populations under scenario 1. Interestingly, such events are associated with a drastic reduction in mating type number.
Resumo:
Abstract :The majority of land plants form the symbiosis with arbuscular mycorrhizal fungi (AMF). The AM symbiosis has existed for hundreds of millions of years but little or no specificity seems to have co- evolved between the partners and only about 200 morphospecies of AMF are known. The fungi supply the plants most notably with phosphate in exchange for carbohydrates. The fungi improve plant growth, protect them against pathogens and herbivores and the symbiosis plays a key role in ecosystem productivity and plant diversity. The fungi are coenocytic, grow clonally and no sexual stage in their life cycle is known. For these reasons, they are presumed ancient asexuals. Evidence suggests that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. Consequently, the nucleotype content of new clonal offspring could potentially be altered by segregation of nuclei at spore formation and by genetic exchange between different AMF. Given the importance of AMF, it is surprising that remarkably little is known about the genetics and genomics of the fungi.The main goal of this thesis was to investigate the combined effects of plant species differences and of genetic exchange and segregation in AMF on the symbiosis. This work showed that single spore progeny can receive a different assortment of nucleotypes compared to their parent and compared to other single spore progeny. This is the first direct evidence that segregation occurs in AMF. We then showed that both genetic exchange and segregation can lead to new progeny that differentially alter plant growth compared to their parents. We also found that genetic exchange and segregation can lead to different development of the fungus during the establishment of the symbiosis. Finally, we found that a shift of host species can differentially alter the phenotypes and genotypes of AMF progeny obtained by genetic exchange and segregation compared to their parents.Overall, this study confirms the multigenomic state of the AMF Glomus intraradices because our findings are possible only if the fungus contains genetically different nuclei. We demonstrated the importance of the processes of genetic exchange and segregation to produce, in a very short time span, new progeny with novel symbiotic effects. Moreover, our results suggest that different host species could affect the fate of different nucleotypes following genetic exchange and segregation in AMF, and can potentially contribute to the maintenance of genetic diversity within AMF individuals. This work brings new insights into understanding how plants and fungi have coevolved and how the genetic diversity in AMF can be maintained. We recommend that the intra-ir1dividual AMF diversity and these processes should be considered in future research on this symbiosis.Résumé :La majorité des plantes terrestres forment des symbioses avec les champignons endomycorhiziens arbusculaires (CEA). Cette symbiose existe depuis plusieurs centaines de millions d'années mais peu ou pas de spécificité semble avoir co-évoluée entre les partenaires et seulement 200 morpho-espèces de CEA sont connues. Le champignon fournit surtout aux plantes du phosphate en échange de carbohydrates. Le champignon augmente la croissance des plantes, les protège contre des pathogènes et herbivores et la symbiose joue un rôle clé dans la productivité des écosystèmes et de la diversité des plantes. Les CEA sont coenocytiques, se reproduisent clonalement et aucune étape sexuée n'est connue dans leur cycle de vie. Pour ces raisons, ils sont présumés comme anciens asexués. Des preuves suggèrent que les CEA ont des populations de nucleotypes différents coexistant dans un cytoplasme commun. Par conséquent, le contenu en nucleotype des nouveaux descendants clonaux pourrait être altéré par la ségrégation des noyaux lors de la fonnation des spores et par l'échange génétique entre différents CEA. Etant donné l'importance des CEA, il est surprenant que si peu soit connu sur la génétique et la génomique du champignon.Le principal but de cette thèse a été d'étudier les effets combinés de différentes espèces de plantes et des mécanismes d'échange génétique et de ségrégation chez les CEA sur la symbiose. Ce travail a montré que chaque nouvelle spore produite pouvait recevoir un assortiment différent de noyaux comparé au parent ou comparé à d'autres nouvelles spores. Ceci est la première preuve directe que la ségrégation peut se produire chez les CEA. Nous avons ensuite montré qu'à la fois l'échange génétique et la ségrégation pouvaient mener à de nouveaux descendants qui altèrent différemment la croissance des plantes, comparé à leurs parents. Nous avons également trouvé que l'échange génétique et la ségrégation pouvaient entraîner des développements différents du champignon pendant l'établissement de la symbiose. Pour finir, nous avons trouvé qu'un changement d'espèce de l'hôte pouvait altérer différemment les phénotypes et génotypes des descendants issus d'échange génétique et de ségrégation, comparé à leurs parents.Globalement, cette étude confirme l'état multigénomique du CEA Glumus intraradices car nous résultats sont possibles seulement si le champignon possède des noyaux génétiquement différents. Nous avons démontrés l'importance des mécanismes d'échange génétique et de ségrégation pour produire en très peu de temps de nouveaux descendants ayant des effets symbiotiques nouveaux. De plus, nos résultats suggèrent que différentes espèces de plantes peuvent agir sur le devenir des nucleotypes après l'échange génétique et la ségrégation chez les CEA, et pourraient contribuer à la maintenance de la diversité génétique au sein d'un même CEA. Ce travail apporte des éléments nouveaux pour comprendre comment les plantes et les champignons ont coévolué et comment la diversité génétique chez les CEA peut être maintenue. Nous recommandons de considérer la diversité génétique intra-individuelle des CEA et ces mécanismes lors de futures recherches sur cette symbiose.
Resumo:
Elderly individuals display a rapid age-related increase in intraindividual variability (IIV) of their performances. This phenomenon could reflect subtle changes in frontal lobe integrity. However, structural studies in this field are still missing. To address this issue, we computed an IIV index for a simple reaction time (RT) task and performed magnetic resonance imaging (MRI) including voxel based morphometry (VBM) and the tract based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) in 61 adults aged from 22 to 88 years. The age-related IIV increase was associated with decreased fractional anisotropy (FA) as well as increased radial (RD) and mean (MD) diffusion in the main white matter (WM) fiber tracts. In contrast, axial diffusion (AD) and grey matter (GM) densities did not show any significant correlation with IIV. In multivariate models, only FA has an age-independent effect on IIV. These results revealed that WM but not GM changes partly mediated the age-related increase of IIV. They also revealed that the association between WM and IIV could not be only attributed to the damage of frontal lobe circuits but concerned the majority of interhemispheric and intrahemispheric corticocortical connections.
Resumo:
In vitro tests were carried out to assess the activity of 26 Brazilian isolates of predatory fungi of the genus Arthrobotrys on a free-living nematode (Panagrellus sp.) and on infective larvae of Haemonchus placei, a parasitic gastrointestinal nematode of cattle. The results showed that the free-living nematode Panagrellus sp. was the most preyed upon, compared to H. placei, for all the fungal treatments. Also, variable predatory capacity was observed for different fungal isolates belonging to the same genus when applied to different nematode species.
Resumo:
One hundred specimens of white croakers, Micropogonias furnieri (Desmarest 1823) (Osteichthyes: Sciaenidae) collected from Pedra de Guaratiba (23°01'S, 43°38'W), State of Rio de Janeiro, Brazil, from September 1997 to August 1999, were necropsied to study their parasites. The majority of the fish (95%) were parasitized by metazoan. Twenty-eight species of parasites were collected. The nematodes were the 40.5% of the total number of parasites specimens collected. Dichelyne elongatus was the most dominant species. Lobatostoma ringens, Pterinotrematoides mexicanum, Corynosoma australe, D. elongatus, and Caligus haemulonis showed a positive correlation between the host's total length and parasite prevalence and abundance. The monogenean P. mexicanum had differences in the prevalence and abundance in relation to sex of the host. The mean diversity in the infracommunities of M. furnieri was H=0.499±0.411, with correlation with the host's total length and without differences in relation to sex of the host. One pair of ectoparasites showed positive covariation, and two pairs of endoparasites showed positive association and covariation between their prevalences and abundances, respectively. Negative association or covariations were not found. The dominance of endoparasites in the croakers parasite infracommunities reinforced the differences found in sciaenids from the South American Pacific Ocean, in which the ectoparasites are dominant.
Resumo:
In vitro tests were carried out to verify the activity of 26 Brazilian isolates of predatory fungi of the genus Arthrobotrys on a free-living nematode (Panagrellus sp.) and on infective larvae of Cooperia punctata, a parasitic gastrointestinal nematode of cattle. The results showed that the free-living nematode Panagrellus sp. was the most preyed upon, compared to C. punctata, for all the fungal treatments. Also, variable predatory capacity was observed for different fungal isolates belonging to the same genus when applied to different nematode species.