953 resultados para Weight training
Resumo:
To ensure better concrete quality and long-term durability, there has been an increasing focus in recent years on the development of test methods for quality control of concrete. This paper presents a study to evaluate the effect of water accessible porosity and oven-dry unit weight on the resistance of concrete to chloride-ion penetration. Based on the experimental results and regression analyses, empirical relationships of the charge passed (ASTM C 1202) and chloride migration coefficient (NT Build 492) versus the water accessible porosity and oven dry unit weight of the concrete are established. Using basic physical properties of water accessible porosity and oven dry unit weight which can be easily determined, total charge passed and migration coefficient of the concrete can be estimated for quality control and for estimating durability of concrete.
Resumo:
Facial landmarks play an important role in face recognition. They serve different steps of the recognition such as pose estimation, face alignment, and local feature extraction. Recently, cascaded shape regression has been proposed to accurately locate facial landmarks. A large number of weak regressors are cascaded in a sequence to fit face shapes to the correct landmark locations. In this paper, we propose to improve the method by applying gradual training. With this training, the regressors are not directly aimed to the true locations. The sequence instead is divided into successive parts each of which is aimed to intermediate targets between the initial and the true locations. We also investigate the incorporation of pose information in the cascaded model. The aim is to find out whether the model can be directly used to estimate head pose. Experiments on the Annotated Facial Landmarks in the Wild database have shown that the proposed method is able to improve the localization and give accurate estimates of pose.
Resumo:
We estimated the heritability and correlations between body and carcass weight traits in a cultured stock of giant freshwater prawn (GFP) (Macrobrachium rosenbergii) selected for harvest body weight in Vietnam. The data set consisted of 18,387 body and 1,730 carcass records, as well as full pedigree information collected over four generations. Variance and covariance components were estimated by restricted maximum likelihood fitting a multi-trait animal model. Across generations, estimates of heritability for body and carcass weight traits were moderate and ranged from 0.14 to 0.19 and 0.17 to 0.21, respectively. Body trait heritabilities estimated for females were significantly higher than for males whereas carcass weight trait heritabilities estimated for females and males were not significantly different (P>. 0.05). Maternal effects for body traits accounted for 4 to 5% of the total variance and were greater in females than in males. Genetic correlations among body traits were generally high in the mixed sexes. Genetic correlations between body and carcass weight traits were also high. Although some issues remain regarding the best statistical model to be fitted to GFP data, our results suggest that selection for high harvest body weight based on breeding values estimated by fitting an animal model to the data can significantly improve mean body and carcass weight in GFP.
Resumo:
We estimated genetic changes in body and carcass weight traits in a giant freshwater prawn (GFP) (Macrobrachium rosenbergii) population selected for increased body weight at harvest in Vietnam. The data set consisted of 18,387 individual body and 1730 carcass weight records, as well as full pedigree information collected over four generations. Average selection response (per generation) in body weight at harvest (transformed to square root) estimated as the difference between the Selection line and the Control group was 7.4% calculated from least squares mean (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favorable correlated selection responses (estimated from LSMs) were found for other body traits including: total length, cephalothorax length, abdominal length, cephalothorax width, and abdominal width (12.1%, 14.5%, 10.4%, 15.5% and 13.3% over three selection generations, respectively). Data in the second generation of selection showed positive correlated responses for carcass weight traits including: abdominal weight, exoskeleton-off weight, and telson-off weight of 8.8%, 8.6% and 8.8%, respectively. We conclude that body weight at harvest responded well to the application of combined (between and within) family selection and correlated responses in carcass weight traits were favorable.
Resumo:
BACKGROUND/OBJECTIVE: To investigate the extent of baseline psychosocial characterisation of subjects in published dietary randomised controlled trials (RCTs) for weight loss. SUBJECTS/METHODS: Systematic review of adequately sized (nX10) RCTs comprising X1 diet-alone arm for weight loss were included for this systematic review. More specifically, trials included overweight (body mass index 425 kg/m2) adults, were of duration X8 weeks and had body weight as the primary outcome. Exclusion criteria included specific psychological intervention (for example, Cognitive Behaviour Therapy (CBT)), use of web-based tools, use of supplements, liquid diets, replacement meals and very-low calorie diets. Physical activity intervention was restricted to general exercise only (not supervised or prescribed, for example, VO2 maximum level). RESULTS: Of 176 weight-loss RCTs published during 2008–2010, 15 met selection criteria and were assessed for reported psychological characterisation of subjects. All studies reported standard characterisation of clinical and biochemical characteristics of subjects. Eleven studies reported no psychological attributes of subjects (three of these did exclude those taking psychoactive medication). Three studies collected data on particular aspects of psychology related to specific research objectives (figure scale rating, satiety and quality-of-life). Only one study provided a comprehensive background on psychological attributes of subjects. CONCLUSION: Better characterisation in behaviour-change interventions will reduce potential confounding and enhance generalisability of such studies.
Resumo:
This professional doctorate included a major research project investigating the efficacy of acting methodologies taught at four leading Australian actor-training institutions - National Institute of Dramatic Art, Queensland University of Technology, Victorian College of the Arts, and Western Australian Academy of Performing Arts. This study represents the first review of its kind, in which the 'castability' of acting graduates from each of these schools was scrutinized by industry leaders. The study not only reveals the methodologies and philosophies of each school but determines an ideal set of practices for future consideration. The doctorate also included two practice-led projects examining the candidate's transition from actor and teacher of actors to theatre director. The candidate's qualitative study was also underpinned by reflective practice on her extensive professional experience as actor, teacher and director.
Resumo:
The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0–90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1–48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24–48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.
Resumo:
The growth of suitable tissue to replace natural blood vessels requires a degradable scaffold material that is processable into porous structures with appropriate mechanical and cell growth properties. This study investigates the fabrication of degradable, crosslinkable prepolymers of l-lactide-co-trimethylene carbonate into porous scaffolds by electrospinning. After crosslinking by γ-radiation, dimensionally stable scaffolds were obtained with up to 56% trimethylene carbonate incorporation. The fibrous mats showed Young’s moduli closely matching human arteries (0.4–0.8 MPa). Repeated cyclic extension yielded negligible change in mechanical properties, demonstrating the potential for use under dynamic physiological conditions. The scaffolds remained elastic and resilient at 30% strain after 84 days of degradation in phosphate buffer, while the modulus and ultimate stress and strain progressively decreased. The electrospun mats are mechanically superior to solid films of the same materials. In vitro, human mesenchymal stem cells adhered to and readily proliferated on the three-dimensional fiber network, demonstrating that these polymers may find use in growing artificial blood vessels in vivo.
Resumo:
The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.
Resumo:
Background Farm men and women in Australia have higher levels of problematic alcohol use than their urban counterparts and experience elevated health risks associated with excessive alcohol consumption. The Sustainable Farm Families (SFF) program has worked successfully with farm men and women to address health, well- being and safety and has identified that further research and training is required to understand and address alcohol misuse behaviours. This project will add an innovative component to the program by training health professionals working with farm men and women to discuss and respond to alcohol-related physical and mental health problems. Methods/Design A mixed method design with multi-level evaluation will be implemented following the development and delivery of a training program (The Alcohol Intervention Training Program {AITP}) for Sustainable Farm Families health professionals. Pre-, post- and follow-up surveys will be used to assess both the impact of the training on the knowledge, confidence and skills of the health professionals to work with alcohol misuse and associated problems, and the impact of the training on the attitudes, behaviour and mental health of farm men and women who participate in the SFF project. Evaluations will take a range of forms including self-rated outcome measures and interviews. Discussion The success of this project will enhance the health and well-being of a critical population, the farm men and women of Australia, by producing an evidence-based strategy to assist them to adopt more positive alcohol-related behaviours that will lead to better physical and mental health.
Resumo:
Background & aims Depression has a complex association with cardiometabolic risk, both directly as an independent factor and indirectly through mediating effects on other risk factors such as BMI, diet, physical activity, and smoking. Since changes to many cardiometabolic risk factors involve behaviour change, the rise in depression prevalence as a major global health issue may present further challenges to long-term behaviour change to reduce such risk. This study investigated associations between depression scores and participation in a community-based weight management intervention trial. Methods A group of 64 overweight (BMI > 27), otherwise healthy adults, were recruited and randomised to follow either their usual diet, or an isocaloric diet in which saturated fat was replaced with monounsaturated fat (MUFA), to a target of 50% total fat, by adding macadamia nuts to the diet. Subjects were assessed for depressive symptoms at baseline and at ten weeks using the Beck Depression Inventory (BDI-II). Both control and intervention groups received advice on National Guidelines for Physical Activity and adhered to the same protocol for food diary completion and trial consultations. Anthropometric and clinical measurements (cholesterol, inflammatory mediators) also were taken at baseline and 10 weeks. Results During the recruitment phase, pre-existing diagnosed major depression was one of a range of reasons for initial exclusion of volunteers from the trial. Amongst enrolled participants, there was a significant correlation (R = −0.38, p < 0.05) between BDI-II scores at baseline and duration of participation in the trial. Subjects with a baseline BDI ≥10 (moderate to severe depression symptoms) were more likely to dropout of the trial before week 10 (p < 0.001). BDI-II scores in the intervention (MUFA) diet group decreased, but increased in the control group over the 10-week period. Univariate analysis of variance confirmed these observations (adjusted R2 = 0.257, p = 0.01). Body weight remained static over the 10-week period in the intervention group, corresponding to a relative increase in the control group (adjusted R2 = 0.097, p = 0.064). Conclusions Depression symptoms have the potential to affect enrolment in and adherence to dietbased risk reduction interventions, and may consequently influence the generalisability of such trials. Depression scores may therefore be useful for characterising, screening and allocating subjects to appropriate treatment pathways.
Resumo:
Purpose: Hyperactive platelets contribute to the thrombotic response in humans, and exercise transiently increases platelet function. Caffeine is routinely used by athletes as an ergogenic aid, but the combined effect of exercise and caffeine on platelet function has not been investigated. Methods: Twelve healthy males were randomly assigned to one of four groups and undertook four experimental trials of a high-intensity aerobic interval training (AIT) bout or rest with ingestion of caffeine (3 mg·kg-1) or placebo. AIT was 8 × 5 min at approximately 75% peak power output (approximately 80% V?O2peak) and 1-min recovery (approximately 40% peak power output, approximately 50% V?O2peak) intervals. Blood/urine was collected before, 60, and 90 min after capsule ingestion and analyzed for platelet aggregation/activation. Results: AIT increased platelet reactivity to adenosine diphosphate (placebo 30.3%, caffeine 13.4%, P < 0.05) and collagen (placebo 10.8%, caffeine 5.1%, P < 0.05) compared with rest. Exercise placebo increased adenosine diphosphate-induced aggregation 90 min postingestion compared with baseline (40.5%, P < 0.05), but the increase when exercise was combined with caffeine was small (6.6%). During the resting caffeine protocol, collagen-induced aggregation was reduced (-4.3%, P < 0.05). AIT increased expression of platelet activation marker PAC-1 with exercise placebo (P < 0.05) but not when combined with caffeine. Conclusion: A single bout of AIT increases platelet function, but caffeine ingestion (3 mg·kg) does not exacerbate platelet function at rest or in response to AIT. Our results provide new information showing caffeine at a dose that can elicit ergogenic effects on performance has no detrimental effect on platelet function and may have the potential to attenuate increases in platelet activation and aggregation when undertaking strenuous exercise.
Resumo:
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Resumo:
In this commentary the authors discuss the molecular basis of the training adaptation and review the role of several key signaling proteins important in the adaptation to endurance and resistance training.