981 resultados para Voltage-sensitive Sodium Channels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pericyte perivascular cells, believed to originate mesenchymal stem cells (MSC), are characterized by their capability to differentiate into various phenotypes and participate in tissue reconstruction of different organs, including the brain. We show that these cells can be induced to differentiation into neural-like phenotypes. For these studies, pericytes were obtained from aorta ex-plants of Sprague-Dawley rats and differentiated into neural cells following induction with trans retinoic acid (RA) in serum-free defined media or differentiation media containing nerve growth and brain-derived neuronal factor, B27, N2, and IBMX. When induced to differentiation with RA, cells express the pluripotency marker protein stage-specific embryonic antigen-1, neural-specific proteins beta 3-tubulin, neurofilament-200, and glial fibrillary acidic protein, suggesting that pericytes undergo differentiation, similar to that of neuroectodermal cells. Differentiated cells respond with intracellular calcium transients to membrane depolarization by KCl indicating the presence of voltage-gated ion channels and express functional N-methyl-D-aspartate receptors, characteristic for functional neurons. The study of neural differentiation of pericytes contributes to the understanding of induction of neuroectodermal differentiation as well as providing a new possible stem-cell source for cell regeneration therapy in the brain. (C) 2011 International Society for Advancement of Cytometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The red-belly toads (Melanophryniscus) of southern South America secrete defensive alkaloids from dermal granular glands. To date, all information on Melanophryniscus alkaloids has been obtained by extraction from either skins or whole organisms; however, in other amphibians, tetrodotoxins, samandarines, and bufadienolides have been detected in both skin and other organs, which raise the possibility that lipophilic alkaloids may occur in non-integumentary tissues in Melanophryniscus as well. To test this hypothesis, we studied the distribution of alkaloids in the skin, skeletal muscle, liver, and mature oocytes of the red-belly toad M. simplex from three localities in southern Brazil. Gas chromatography and mass spectrometry of skin extracts from 11 individuals of M. simplex resulted in the detection of 47 alkaloids (including isomers), 9 unclassified and 38 from 12 known structural classes. Each alkaloid that was present in the skin of an individual was also present in the same relative proportion in that individual's skeletal muscle, liver, and oocytes. The most abundant and widely distributed alkaloids were the pumiliotoxins 251D, 267C, and 323A, 5,8-disubstituted indolizidines 207A and 223D, 5,6,8-trisubstituted indolizidine 231B, 3,5-disubstituted pyrrolizidines cis-223B and cis- and trans-251K, and izidine 211C. We report the first record of piperidines in Melanophryniscus, bringing the total number of alkaloid classes detected in this genus to 16. Alkaloid composition differed significantly among the three study sites. The functional significance of defensive chemicals in non-integumentary tissues is unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purinergic receptors participate, in almost every cell type, in controlling metabolic activities and many physiological functions including signal transmission, proliferation and differentiation. While most of P2Y receptors induce transient elevations of intracellular calcium concentration by activation of intracellular calcium pools and forward these signals as waves which can also be transmitted into neighboring cells, P2X receptors produce calcium spikes which also include activation of voltage-operating calcium channels. P2Y and P2X receptors induce calcium transients that activate transcription factors responsible for the progress of differentiation through mediators including calmodulin and calcineurin. Expression of P2X2 as well as of P2X7 receptors increases in differentiating neurons and glial cells, respectively. Gene expression silencing assays indicate that these receptors are important for the progress of differentiation and neuronal or glial fate determination. Metabotropic receptors, mostly P2Y1 and P2Y2 subtypes, act on embryonic cells or cells at the neural progenitor stage by inducing proliferation as well as by regulation of neural differentiation through NFAT translocation. The scope of this review is to discuss the roles of purinergic receptor-induced calcium spike and wave activity and its codification in neurodevelopmental and neurodifferentiation processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enteric nervous system regulates autonomously from the central nervous system all the reflex pathways that control blood flow, motility, water and electrolyte transport and acid secretion. The ability of the gut to function in isolation is one of the most intriguing phenomenons in neurogastroenterology. This requires coding of sensory stimuli by cells in the gut wall. Enteric neurons are prominent candidates to relay mechanosensitivity. Surprisingly, the identity of mechanosensitive neurons in the enteric nervous system as well as the appropriate stimulus modality is unknown despite the evidence that enteric neurons respond to sustained distension. Objectives: The aim of our study was to record from mechanosensitive neurons using physiological stimulus modalities. Identification of sensory neurons is of central importance to understand sensory transmission under normal conditions and in gut diseases associated with sensorimotor dysfunctions, such as Irritable Bowel Syndrome. Only then it will be possible to identify novel targets that help to normalise sensory functions. Methods: We used guinea-pig ileum myenteric plexus preparations and recorded responses of all neurons in a given ganglion with a fast neuroimaging technique based on voltage sensitive dyes. To evoke a mechanical response we used two different kinds of stimuli: firstly we applied a local mechanical distortion of the ganglion surface with von Frey hair. Secondarily we mimic the ganglia deformation during physiological movements of myenteric ganglia in a freely contracting ileal preparation. We were able to reliably and reproducibly mimic this distortion by intraganglionic injections of small volumes of oxygenated and buffered Krebs solution using stimulus parameters that correspond to single contractions. We also performed in every ganglion tested, electrical stimulations to evoke fast excitatory postsynaptic potentials. Immunohistochemistry reactions were done with antibodies against Calbindin and NeuN, considered markers for sensory neurons. Results: Recordings were performed in 46 ganglia from 31 guinea pigs. In every ganglion tested we found from 1 to 21 (from 3% to 62%) responding cells with a median value of 7 (24% of the total number of neurons). The response consisted of an almost instantaneous spike discharge that showed adaptation. The median value of the action potential frequency in the responding neurons was 2.0 Hz, with a recording time of 1255 ms. The spike discharge lasted for 302 ± 231 ms and occurred only during the initial deformation phase. During sustained deformation no spike discharge was observed. The response was reproducible and was a direct activation of the enteric neurons since it remained after synaptic blockade with hexamethonium or ω-conotoxin and after long time perfusion with capsaicin. Muscle tone appears not to be required for activation of mechanosensory neurons. Mechanosensory neurons showed a response to mechanical stimulation related to the stimulus strength. All mechanosensory neurons received fast synaptic inputs. There was no correlation between mechanosensitivity and Calbindin-IR and NeuN-IR (44% of mechanosensitive neurones Calb-IR-/NeuN-IR-). Conclusions: We identified mechanosensitive neurons in the myenteric plexus of the guinea pig ileum which responded to brief deformation. These cells appear to be rapidly accommodating neurons which respond to dynamic change. All mechanosensitive neurons received fast synaptic input suggesting that their activity can be highly modulated by other neurons and hence there is a low stimulus fidelity which allows adjusting the gain in a sensory network. Mechanosensitivity appears to be a common feature of many enteric neurons belonging to different functional classes. This supports the existence of multifunctional enteric neurons which may fulfil sensory, integrative and motor functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heart is a wonderful but complex organ: it uses electrochemical mechanisms in order to produce mechanical energy to pump the blood throughout the body and allow the life of humans and animals. This organ can be subject to several diseases and sudden cardiac death (SCD) is the most catastrophic manifestation of these diseases, responsible for the death of a large number of people throughout the world. It is estimated that 325000 Americans annually die for SCD. SCD most commonly occurs as a result of reentrant tachyarrhythmias (ventricular tachycardia (VT) and ventricular fibrillation (VF)) and the identification of those patients at higher risk for the development of SCD has been a difficult clinical challenge. Nowadays, a particular electrocardiogram (ECG) abnormality, “T-wave alternans” (TWA), is considered a precursor of lethal cardiac arrhythmias and sudden death, a sensitive indicator of risk for SCD. TWA is defined as a beat-to-beat alternation in the shape, amplitude, or timing of the T-wave on the ECG, indicative of the underlying repolarization of cardiac cells [5]. In other words TWA is the macroscopic effect of subcellular and celluar mechanisms involving ionic kinetics and the consequent depolarization and repolarization of the myocytes. Experimental activities have shown that TWA on the ECG is a manifestation of an underlying alternation of long and short action potential durations (APDs), the so called APD-alternans, of cardiac myocytes in the myocardium. Understanding the mechanism of APDs-alternans is the first step for preventing them to occur. In order to investigate these mechanisms it’s very important to understand that the biological systems are complex systems and their macroscopic properties arise from the nonlinear interactions among the parts. The whole is greater than the sum of the parts, and it cannot be understood only by studying the single parts. In this sense the heart is a complex nonlinear system and its way of working follows nonlinear dynamics; alternans also, they are a manifestation of a phenomenon typical in nonlinear dynamical systems, called “period-dubling bifurcation”. Over the past decade, it has been demonstrated that electrical alternans in cardiac tissue is an important marker for the development of ventricular fibrillation and a significant predictor for mortality. It has been observed that acute exposure to low concentration of calcium does not decrease the magnitude of alternans and sustained ventricular Fibrillation (VF) is still easily induced under these condition. However with prolonged exposure to low concentration of calcium, alternans disappears, but VF is still inducible. This work is based on this observation and tries to make it clearer. The aim of this thesis is investigate the effect of hypocalcemia spatial alternans and VF doing experiments with canine hearts and perfusing them with a solution with physiological ionic concentration and with a solution with low calcium concentration (hypocalcemia); in order to investigate the so called memory effect, the experimental activity was modified during the way. The experiments were performed with the optical mapping technique, using voltage-sensitive dye, and a custom made Java code was used in post-processing. Finding the Nolasco and Dahlen’s criterion [8] inadequate for the prediction of alternans, and takin into account the experimental results, another criterion, which consider the memory effect, has been implemented. The implementation of this criterion could be the first step in the creation of a method, AP-based, discriminating who is at risk if developing VF. This work is divided into four chapters: the first is a brief presentation of the physiology of the heart; the second is a review of the major theories and discovers in the study of cardiac dynamics; the third chapter presents an overview on the experimental activity and the optical mapping technique; the forth chapter contains the presentation of the results and the conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. There are two projects in this thesis. In project1, we performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1–2 s in duration and ~10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150–300 ms duration and 30–40 Hz in frequency occurred every 10–30 s. (3) Long oscillations appeared only every ~20 min and revealed the largest amplitude (250–750 µV) and longest duration (>40 s). These three distinct patterns of early oscillatory activity differently synchronized the neonatal cortical network. Whereas spindle bursts and gamma oscillations did not propagate and synchronized a local neuronal network of 200–400 µm in diameter, long oscillations propagated with 25–30 µm/s and synchronized 600-800 µm large ensembles. All three activity patterns were triggered by sensory activation. Single electrical stimulation of the whisker pad or tactile whisker activation elicited neocortical spindle bursts and gamma activity. Long oscillations could be only evoked by repetitive sensory stimulation. The neonatal oscillatory patterns in vivo depended on NMDAreceptor-mediated synaptic transmission and gap junctional coupling. Whereas spindle bursts and gamma oscillations may represent an early functional columnar-like pattern, long oscillations may serve as a propagating activation signal consolidating these immature neuronal networks. In project2, Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex and somatosensory thalamus of newborn rats in vivo, we found that spontaneous and whisker stimulation induced activity patterns were restricted to functional cortical columns already at the day of birth. Spontaneous and stimulus evoked cortical activity consisted of gamma oscillations followed by spindle bursts. Spontaneous events were mainly generated in the thalamus or by spontaneous whisker movements. Our findings indicate that during early developmental stages cortical networks self-organize in ontogenetic columns via spontaneous gamma oscillations triggered by the thalamus or sensory periphery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il nucleo accumbens (NAc), il maggior componente del sistema mesocorticolimbico, è coinvolto nella mediazione delle proprietà di rinforzo e nella dipendenza da diverse sostanze d’abuso. Le sinapsi glutammatergiche del NAc possono esprimere plasticità, tra cui una forma di depressione a lungo termine (LTD) dipendente dagli endocannabinoidi (eCB). Recenti studi hanno dimostrato un’interazione tra le vie di segnalazione del sistema eCB e quelle di altri sistemi recettoriali, compreso quello serotoninergico (5-HT); la vasta colocalizzazione di recettori serotoninergici e CB1 nel NAc suggerisce la possibilità di un’interazione tra questi due sistemi. In questo studio abbiamo riscontrato che una stimolazione a 4 Hz per 20 minuti (LFS-4Hz) delle afferenze glutammatergiche in fettine cerebrali di ratto, induce una nuova forma di eCB-LTD nel core del NAc, che richiede l’attivazione dei recettori CB1 e 5-HT2 e l’apertura dei canali del Ca2+ voltaggio-dipendenti di tipo L. Inoltre abbiamo valutato che l’applicazione esogena di 5-HT (5 M, 20 min) induce una LTD analoga (5-HT-LTD) a livello delle stesse sinapsi, che richiede l’attivazione dei medesimi recettori e l’apertura degli stessi canali del Ca2+; LFS-4Hz-LTD e 5-HT-LTD sono reciprocamente saturanti. Questi risultati suggeriscono che la LFS-4Hz induce il rilascio di 5-HT, che si lega ai recettori 5-HT2 a livello postsinaptico incrementando l’influsso di Ca2+ attraverso i canali voltaggio-dipendenti di tipo L e la produzione e il rilascio di 2-arachidonoilglicerolo; l’eCB viaggia a ritroso e si lega al recettore CB1 a livello presinaptico, causando una diminuzione duratura del rilascio di glutammato, che risulta in una LTD. Queste osservazioni possono essere utili per comprendere i meccanismi neurofisiologici che sono alla base della dipendenza da sostanze d’abuso, della depressione maggiore e di altre malattie psichiatriche caratterizzate dalla disfunzione della neurotrasmissione di 5-HT nel NAc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term potentiation in the neonatal rat rnbarrel cortex in vivo rnLong-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex LTP has been so far only studied in vitro. I combined voltage-sensitive dye imaging with extracellular multi-electrode recordings to study whisker stimulation-induced LTP for both the slope of field potential and the number of multi-unit activity in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the stimulated barrel-related column, smaller in the surrounding septal region and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV / lower layer II/III at P3-P5 and in the cortical plate / upper layer V at P0-P1. This study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo. These activity-dependent modifications during the critical period may play an important role in the development and refinement of the topographic map in the barrel cortex. (An et al., 2012)rnEarly motor activity triggered by gamma and spindle bursts in neonatal rat motor cortexrnSelf-generated neuronal activity generated in subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neuronal activity patterns and functions of neonatal primary motor cortex (M1) in the early movements are still unknown. I combined voltage-sensitive dye imaging with simultaneous extracellular multi-electrode recordings in the neonatal rat S1 and M1 in vivo. At P3-P5, gamma and spindle bursts observed in M1 could trigger early paw movements. Furthermore, the paw movements could be also elicited by the focal electrical stimulation of M1 at layer V. Local inactivation of M1 could significantly attenuate paw movements, suggesting that the neonatal M1 operates in motor mode. In contrast, the neonatal M1 can also operate in sensory mode. Early spontaneous movements and sensory stimulations of paw trigger gamma and spindle bursts in M1. Blockade of peripheral sensory input from the paw completely abolished sensory evoked gamma and spindle bursts. Moreover, both sensory evoked and spontaneously occurring gamma and spindle bursts mediated interactions between S1 and M1. Accordingly, local inactivation of the S1 profoundly reduced paw stimulation-induced and spontaneously occurring gamma and spindle bursts in M1, indicating that S1 plays a critical role in generation of the activity patterns in M1. This study proposes that both self-generated and sensory evoked gamma and spindle bursts in M1 may contribute to the refinement and maturation of corticospinal and sensorimotor networks required for sensorimotor coordination.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium (Ca2+) ist ein ubiquitär vorkommendes Signalmolekül, das an der Regulation zahlreicher zellulärer Prozesse, von der Proliferation bis zum programmierten Zelltod, beteiligt ist. Daher müssen die intrazellulären Ca2+-Spiegel streng kontrolliert werden. Veränderungen der Ca2+-Homöostase während der altersassoziierten Neurodegeneration können dazu beitragen, dass Neuronen vulnerabler sind. So wurden erhöhte Ca2+-Konzentrationen in gealterten Neuronen, begleitet von einer erhöhten Vulnerabilität, beobachtet (Hajieva et al., 2009a). Weiterhin wird angenommen, dass der selektive Untergang von dopaminergen Neuronen bei der Parkinson Erkrankung auf eine erhöhte Ca2+-Last zurückzuführen sein könnte, da diese Neuronen einem ständigen Ca2+-Influx,rnaufgrund einer besonderen Isoform (CaV 1.3) spannungsgesteuerter Ca2+-Kanäle des L-Typs, ausgesetzt sind (Chan et al., 2007). Bislang wurden die molekularen Mechanismen, die einem Ca2+-Anstieg zu Grunde liegen und dessen Auswirkung jedoch nicht vollständig aufgeklärt und daher in der vorliegenden Arbeit untersucht. Um Veränderungen der Ca2+-Homöostase während der altersassoziiertenrnNeurodegeneration zu analysieren wurden primäre Mittelhirnzellen aus Rattenembryonen und SH-SY5Y-Neuroblastomazellen mit dem Neurotoxin 1-Methyl-4-Phenyl-Pyridin (MPP+), das bei der Etablierung von Modellen der Parkinson-Erkrankung breite Anwendung findet, behandelt. Veränderungen der intrazellulären Ca2+-Konzentration wurden mit einem auf dem grün fluoreszierenden Protein (GFP)-basierten Ca2+-Indikator,rn„Cameleon cpYC 3.6“ (Nagai et al., 2004), ermittelt. Dabei wurde in dieser Arbeit gezeigt, dass MPP+ die Abregulation der neuronenspezifischen ATP-abhängigen Ca2+-Pumpe der Plasmamembran (PMCA2) induziert, die mit der Ca2+-ATPase des endoplasmatischen Retikulums (SERCA) und dem Na+/Ca2+-Austauscher (NCX) das zelluläre Ca2+-Effluxsystem bildet, was zu einer erhöhten zytosolischen Ca2+-Konzentration führt. Die PMCA2-Abnahme wurde sowohl auf Transkriptionsebene als auch auf Proteinebene demonstriert, während keine signifikanten Veränderungen der SERCA- und NCX-Proteinmengen festgestellt wurden. Als Ursache der Reduktion der PMCA2-Expression wurde eine Abnahme des Transkriptionsfaktors Phospho-CREB ermittelt, dessen Phosphorylierungsstatus abhängig von der Proteinkinase A (PKA) war. Dieser Mechanismus wurde einerseits unter MPP+-Einfluss und andererseits vermittelt durch endogene molekulare Modulatoren gezeigt. Interessanterweise konnten die durch MPP+ induzierte PMCA2-Abregulation und der zytosolische Ca2+-Anstieg durch die Aktivierung der PKA verhindert werden. Parallel dazu wurde eine MPP+-abhängige verringerte mitochondriale Ca2+-Konzentration nachgewiesen, welche mit einer Abnahme des mitochondrialen Membranpotentials korrelierte. Darüber hinaus kam es als Folge der PMCA2-Abnahme zu einem verminderten neuronalen Überleben.rnVeränderungen der Ca2+-Homöostase wurden auch während der normalen Alterung inrnprimären Fibroblasten und bei Mäusen nachgewiesen. Dabei wurden verringerte PMCA und SERCA-Proteinmengen in gealterten Fibroblasten, einhergehend mit einem Anstieg der zytosolischen Ca2+-Konzentration demonstriert. Weiterhin wurden verringerte PMCA2-Proteinmengen im Mittelhirn von gealterten Mäusen (C57B/6) detektiert.rnDer zelluläre Ca2+-Efflux ist somit sowohl im Zuge der physiologischen Alterung als auch in einem altersbezogenen Krankheitsmodell beeinträchtigt, was das neuronale Überleben beeinflussen kann. In zukünftige Studien soll aufgeklärt werden, welche Auswirkungen einer PMCA2-Reduktion genau zu dem Verlust von Neuronen führen bzw. ob durch eine PMCA2-Überexpression neurodegenerative Prozesse verhindert werden können.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Among grape skin polyphenols, trans-resveratrol (RES) has been reported to slow the development of cardiac fibrosis and to affect myofibroblast (MFB) differentiation. Because MFBs induce slow conduction and ectopic activity following heterocellular gap junctional coupling to cardiomyocytes, we investigated whether RES and its main metabolites affect arrhythmogenic cardiomyocyte-MFB interactions. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage-sensitive dyes. Long-term video recordings served to characterize drug-related effects on ectopic activity. Data are given as means ± S.D. (n = 4–20). Results: Exposure of pure cardiomyocyte strands to RES at concentrations up to 10 µmol/L had no significant effects on impulse conduction velocity (θ) and maximal action potential upstroke velocities (dV/dtmax). By contrast, in MFB-coated strands exhibiting slow conduction, RES enhanced θ with an EC50 of ~10 nmol/L from 226 ± 38 to 344 ± 24 mm/s and dV/dtmax from 48 ± 7 to 69 ± 2%APA/ms, i.e., to values of pure cardiomyocyte strands (347 ± 33 mm/s; 75 ± 4%APA/ms). Moreover, RES led to a reduction of ectopic activity over the course of several hours in heterocellular preparations. RES is metabolized quickly in the body; therefore, we tested the main known metabolites for functional effects and found them similarly effective in normalizing conduction with EC50s of ~10 nmol/L (3-OH-RES), ~20 nmol/L (RES-3-O-β-glucuronide) and ~10 nmol/L (RES-sulfate), respectively. At these concentrations, neither RES nor its metabolites had any effects on MFB morphology and α-smooth muscle actin expression. This suggests that the antiarrhythmic effects observed were based on mechanisms different from a change in MFB phenotype. Conclusions: The results demonstrate that RES counteracts MFB-dependent arrhythmogenic slow conduction and ectopic activity at physiologically relevant concentrations. Because RES is rapidly metabolized following intestinal absorption, the finding of equal antiarrhythmic effectiveness of the main RES metabolites warrants their inclusion in future studies of potentially beneficial effects of these substances on the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern life- and medical-sciences major efforts are currently concentrated on creating artificial photoenzymes, consisting of light- oxygen-voltage-sensitive (LOV) domains fused to a target enzyme. Such protein constructs possess great potential for controlling the cell metabolism as well as gene function upon light stimulus. This has recently been impressively demonstrated by designing a novel artificial fusion protein, connecting the AsLOV2-Jα-photosensor from Avena sativa with the Rac1-GTPase (AsLOV2-Jα-Rac1), and by using it, to control the motility of cancer cells from the HeLa-line. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their signaling pathway after photoexcitation is still in its infancy. Here, we show through computer simulations of the AsLOV2-Jα-Rac1-photoenzyme that the early processes after formation of the Cys450-FMN-adduct involve the breakage of a H-bond between the carbonyl oxygen FMN-C4O and the amino group of Gln513, followed by a rotational reorientation of its sidechain. This initial event is followed by successive events including β-sheet tightening and transmission of torsional stress along the Iβ-sheet, which leads to the disruption of the Jα-helix from the N-terminal end. Finally, this process triggers the detachment of the AsLOV2-Jα-photosensor from the Rac1-GTPase, ultimately enabling the activation of Rac1 via binding of the effector protein PAK1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atrial tissue expresses both connexin 40 (Cx40) and 43 (Cx43) proteins. To assess the relative roles of Cx40 and Cx43 in atrial electrical propagation, we synthesized cultured strands of atrial myocytes derived from mice with genetic deficiency in Cx40 or Cx43 expression and measured propagation velocity (PV) by high-resolution optical mapping of voltage-sensitive dye fluorescence. The amount of Cx40 and/or Cx43 in gap junctions was measured by immunohistochemistry and total or sarcolemmal Cx43 or Cx40 protein by immunoblotting. Progressive genetic reduction in Cx43 expression decreased PV from 34+/-6 cm/sec in Cx43(+/+) to 30+/-8 cm/sec in Cx43(+/-) and 19+/-11 cm/sec in Cx43(-/-) cultures. Concomitantly, the cell area occupied by Cx40 immunosignal in gap junctions decreased from 2.0+/-1.6% in Cx43(+/+) to 1.7+/-0.5% in Cx43(+/-) and 1.0+/-0.2% in Cx43(-/-) strands. In contrast, progressive genetic reduction in Cx40 expression increased PV from 30+/-2 cm/sec in Cx40(+/+) to 40+/-7 cm/sec in Cx40(+/-) and 45+/-10 cm/sec in Cx40(-/-) cultures. Concomitantly, the cell area occupied by Cx43 immunosignal in gap junctions increased from 1.2+/-0.9% in Cx40(+/+) to 2.8+/-1.4% in Cx40(+/-) and 3.1+/-0.6% in Cx40(-/-) cultures. In accordance with the immunostaining results, immunoblots of the Triton X-100-insoluble fraction revealed an increase of Cx43 in gap junctions in extracts from Cx40-ablated atria, whereas total cellular Cx43 remained unchanged. Our results suggest that the relative abundance of Cx43 and Cx40 is an important determinant of atrial impulse propagation in neonatal hearts, whereby dominance of Cx40 decreases and dominance of Cx43 increases local propagation velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Slow conduction and ectopic activity are key elements of cardiac arrhythmogenesis. Both anomalies can be caused by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. Because MFBs are characterized by the expression of {alpha}-smooth muscle actin ({alpha}-SMA) containing stress fibers, we investigated whether pharmacological interference with stress fiber formation might affect myofibroblast arrhythmogenicity. Methods: Experiments were done with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage sensitive dyes. Electrophysiological characteristics of single MFBs were assessed using patch clamp techniques. Actin polymerization was inhibited by latrunculin B (LtB). Data are given as mean±S.D. (n=5 to 22). Results: As assessed by immunocytochemistry, exposure of MFBs to LtB (0.3–10 µmol/L) profoundly disrupted stress fiber formation. This led, within minutes, to a dramatic change in cell morphology with MFBs assuming an astrocyte-like shape. In pure cardiomyocyte preparations, LtB had negligible effects on impulse conduction velocity ({theta}) and maximal action potential upstroke velocities (dV/dtmax). In contrast, LtB applied to MFB coated cardiomyocyte strands substantially increased {theta} from 247±32 to 371±26 mm/s and dV/dtmax from 40±7 to 81±1 %APA/ms, i.e., to values similar to those of pure cardiomyocyte strands (342±13 mm/s; 82±1 %APA/ms). Moreover, LtB at 1 µmol/L completely abolished MFB induced ectopic activity. LtB induced normalization of electrophysiologic parameters can be explained by the finding that LtB hyperpolarized MFBs from –25 mV to –50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause slow conduction and ectopic activity. Conclusions: Pharmacological interference with the cytoskeleton of cardiac MFBs alters their electrophysiological phenotype to such an extent that detrimental effects on cardiomyocyte electrophysiology are completely abolished. This observation might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Slow conduction and ectopic activity are major determinants of cardiac arrhythmogenesis. Both of these conditions can be elicited by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. MFBs appear during structural remodeling of the heart and are characterized by the expression of α-smooth muscle actin (α-SMA) containing stress fibers. In this study, we investigated whether pharmacological interference with the actin cytoskeleton affects myofibroblast arrhythmogeneicity. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse conduction velocity (θ) and maximal upstroke velocities of propagated action potentials (dV/dtmax), expressed as % action potential amplitude change (%APA) per ms, were measured optically using voltage sensitive dyes. Actin was destabilized by latrunculin B (LtB) and cytochalasin D and stabilized with jasplakinolide. Data are given as mean ± S.D. (n = 5-22). Single cell electrophysiology was assessed using standard patch-clamp techniques. Results: As revealed by immunocytochemistry, exposure of MFBs to LtB (0.01-10 μmol/L) profoundly disrupted stress fibers which led to drastic changes in cell morphology with MFBs assuming an astrocyte-like shape. In control cardiomyocyte strands (no MFB coat), LtB had negligible effects on θ and dV/dtmax. In contrast, LtB applied to MFB-coated strands increased θ dose-dependently from 197 ± 35 mm/s to 344 ± 26 mm/s and dV/dtmax from 38 ± 5 to 78 ± 3% APA/ms, i.e., to values virtually identical to those of cardiomyocyte control strands (339 ± 24 mm/s; 77 ± 3% APA/ms). Highly similar results were obtained when exposing the preparations to cytochalasin D. In contrast, stabilization of actin with increasing concentrations of jasplakinolide exerted no significant effects on impulse conduction characteristics in MFB-coated strands. Whole-cell patch-clamp experiments showed that LtB hyperpolarized MFBs from -25 mV to -50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause arrhythmogenic slow conduction and ectopic activity. Conclusion: Pharmacological interference with the actin cytoskeleton of cardiac MFBs affects their electrophysiological phenotype to such an extent that they loose their detrimental effects on cardiomyocyte electrophysiology. This result might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs.