934 resultados para Ventral prostate
Resumo:
Purpose The detection of circulating tumor cells (CTCs) provides important prognostic information in men with metastatic prostate cancer. We aim to determine the rate of detection of CTCs in patients with high-risk non-metastatic prostate cancer using the CellSearch® method. Method Samples of peripheral blood (7.5 mL) were drawn from 36 men with newly diagnosed high-risk non-metastatic prostate cancer, prior to any initiation of therapy and analyzed for CTCs using the CellSearch® method. Results The median age was 70 years, median PSA was 14.1, and the median Gleason score was 9. The median 5-year risk of progression of disease using a validated nomogram was 39 %. Five out of 36 patients (14 %, 95 % CI 5–30 %) had CTCs detected in their circulation. Four patients had only 1 CTC per 7.5 mL of blood detected. One patient had 3 CTCs per 7.5 mL of blood detected, which included a circulating tumor microemboli. Both on univariate analysis and multivariate analysis, there were no correlations found between CTC positivity and the classic prognostic factors including PSA, Gleason score, T-stage and age. Conclusion This study demonstrates that patients with high-risk, non-metastatic prostate cancer present infrequently with small number of CTCs in peripheral blood. This finding is consistent with the limited literature available in this setting. Other CTC isolation and detection technologies with improved sensitivity and specificity may enable detection of CTCs with mesenchymal phenotypes, although none as yet have been validated for clinical use. Newer assays are emerging for detection of new putative biomarkers for prostate cancer. Correlation of disease control outcomes with CTC detection will be important.
Resumo:
Background Genome-wide association studies have identified multiple genetic variants associated with prostate cancer risk which explain a substantial proportion of familial relative risk. These variants can be used to stratify individuals by their risk of prostate cancer. Methods We genotyped 25 prostate cancer susceptibility loci in 40,414 individuals and derived a polygenic risk score (PRS).We estimated empirical odds ratios (OR) for prostate cancer associated with different risk strata defined by PRS and derived agespecific absolute risks of developing prostate cancer by PRS stratum and family history. Results The prostate cancer risk for men in the top 1% of the PRS distribution was 30.6 (95% CI, 16.4-57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI, 3.2-5.5) fold compared with the median risk. The absolute risk of prostate cancer by age of 85 years was 65.8% for a man with family history in the top 1% of the PRS distribution, compared with 3.7% for a man in the bottom 1%. The PRS was only weakly correlated with serum PSA level (correlation = 0.09). Conclusions Risk profiling can identify men at substantially increased or reduced risk of prostate cancer. The effect size, measured by OR per unit PRS, was higher in men at younger ages and in men with family history of prostate cancer. Incorporating additional newly identified loci into a PRS should improve the predictive value of risk profiles. Impact:We demonstrate that the risk profiling based on SNPs can identify men at substantially increased or reduced risk that could have useful implications for targeted prevention and screening programs.
Resumo:
Androgen withdrawal is the only effective form of systemic therapy for men with advanced disease, producing symptomatic and/or objective response in 80% of patients. Unfortunately, androgen independent (AI) progression and death occurs within a few years in the majority of these cases (6). Prostate cancer is highly chemoresistant, with objective response rates of 10% and no demonstrated survival benefit (28). Hormone refractory prostate cancer (HRPC) is therefore the main obstacle to improving the survival and quality of life in patients with advanced disease, and novel therapeutic strategies that target the molecular basis of androgen and chemoresistance are required.
Resumo:
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.
Resumo:
Ample evidence supports that prostate tumor metastasis originates from a rare population of cancer cells, known as cancer stem cells (CSCs). Unfortunately, little is known about the identity of these cells, making it difficult to target the metastatic prostate tumor. Here, for the first time, we report the identification of a rare population of prostate cancer cells that express the Tie-2 protein. We found that this Tie-2High population exists mainly in prostate cancer cell lines that are capable of metastasizing to the bone. These cells not only express a higher level of CSC markers but also demonstrate enhanced resistance to the chemotherapeutic drug Cabazitaxel. In addition, knockdown of the expression of the Tie-2 ligand angiopoietin (Ang-1) led to suppression of CSC markers, suggesting that the Ang-1/Tie-2 signaling pathway functions as an autocrine loop for the maintenance of prostate CSCs. More importantly, we found that Tie-2High prostate cancer cells are more adhesive than the Tie-2Low population to both osteoblasts and endothelial cells. Moreover, only the Tie-2High, but not the Tie-2Low cells developed tumor metastasis in vivo when injected at a low number. Taken together, our data suggest that Tie-2 may play an important role during the development of prostate tumor metastasis.
Resumo:
Prostate cancer is the second most common malignancy among men worldwide. Genome-wide association studies have identified 100 risk variants for prostate cancer, which can explain approximately 33% of the familial risk of the disease. We hypothesized that a comprehensive analysis of genetic variations found within the 3' untranslated region of genes predicted to affect miRNA binding (miRSNP) can identify additional prostate cancer risk variants. We investigated the association between 2,169 miRSNPs and prostate cancer risk in a large-scale analysis of 22,301 cases and 22,320 controls of European ancestry from 23 participating studies. Twenty-two miRSNPs were associated (P<2.3×10(-5)) with risk of prostate cancer, 10 of which were within 7 genes previously not mapped by GWAS studies. Further, using miRNA mimics and reporter gene assays, we showed that miR-3162-5p has specific affinity for the KLK3 rs1058205 miRSNP T-allele, whereas miR-370 has greater affinity for the VAMP8 rs1010 miRSNP A-allele, validating their functional role. SIGNIFICANCE Findings from this large association study suggest that a focus on miRSNPs, including functional evaluation, can identify candidate risk loci below currently accepted statistical levels of genome-wide significance. Studies of miRNAs and their interactions with SNPs could provide further insights into the mechanisms of prostate cancer risk.
Resumo:
The oncogene MDM4, also known as MDMX or HDMX, contributes to cancer susceptibility and progression through its capacity to negatively regulate a range of genes with tumour-suppressive functions. As part of a recent genome-wide association study it was determined that the A-allele of the rs4245739 SNP (A>C), located in the 3'-UTR of MDM4, is associated with an increased risk of prostate cancer. Computational predictions revealed that the rs4245739 SNP is located within a predicted binding site for three microRNAs (miRNAs): miR-191-5p, miR-887 and miR-3669. Herein, we show using reporter gene assays and endogenous MDM4 expression analyses that miR-191-5p and miR-887 have a specific affinity for the rs4245739 SNP C-allele in prostate cancer. These miRNAs do not affect MDM4 mRNA levels, rather they inhibit its translation in C-allele-containing PC3 cells but not in LNCaP cells homozygous for the A-allele. By analysing gene expression datasets from patient cohorts, we found that MDM4 is associated with metastasis and prostate cancer progression and that targeting this gene with miR-191-5p or miR-887 decreases in PC3 cell viability. This study is the first, to our knowledge, to demonstrate regulation of the MDM4 rs4245739 SNP C-allele by two miRNAs in prostate cancer, and thereby to identify a mechanism by which the MDM4 rs4245739 SNP A-allele may be associated with an increased risk for prostate cancer.
Resumo:
Genome-wide association studies have identified more than 80 risk variants for prostate cancer, mainly in European or Asian populations. The generalizability of these variants in other racial/ethnic populations needs to be understood before the loci can be used widely in risk modeling. In our study, we examined 82 previously reported risk variants in 4,853 prostate cancer cases and 4,678 controls of African ancestry. We performed association testing for each variant using logistic regression adjusted for age, study and global ancestry. Of the 82 known risk variants, 68 (83%) had effects that were directionally consistent in their association with prostate cancer risk and 30 (37%) were significantly associated with risk at p < 0.05, with the most statistically significant variants being rs116041037 (p = 3.7 × 10(-26) ) and rs6983561 (p = 1.1 × 10(-16) ) at 8q24, as well as rs7210100 (p = 5.4 × 10(-8) ) at 17q21. By exploring each locus in search of better markers, the number of variants that captured risk in men of African ancestry (p < 0.05) increased from 30 (37%) to 44 (54%). An aggregate score comprised of these 44 markers was strongly associated with prostate cancer risk [per-allele odds ratio (OR) = 1.12, p = 7.3 × 10(-98) ]. In summary, the consistent directions of effects for the vast majority of variants in men of African ancestry indicate common functional alleles that are shared across populations. Further exploration of these susceptibility loci is needed to identify the underlying biologically relevant variants to improve prostate cancer risk modeling in populations of African ancestry.
Resumo:
Prostate cancer is a leading contributor to male cancer-related deaths worldwide. Kallikrein-related peptidases (KLKs) are serine proteases that exhibit deregulated expression in prostate cancer, with KLK3, or prostate specific antigen (PSA), being the widely-employed clinical biomarker for prostate cancer. Other KLKs, such as KLK2, show promise as prostate cancer biomarkers and, additionally, their altered expression has been utilised for the design of KLK-targeted therapies. There is also a large body of in vitro and in vivo evidence supporting their role in cancer-related processes. Here, we review the literature on studies to date investigating the potential of other KLKs, in addition to PSA, as biomarkers and in therapeutic options, as well as their current known functional roles in cancer progression. Increased knowledge of these KLK-mediated functions, including degradation of the extracellular matrix, local invasion, cancer cell proliferation, interactions with fibroblasts, angiogenesis, migration, bone metastasis and tumour growth in vivo, may help define new roles as prognostic biomarkers and novel therapeutic targets for this cancer.
Resumo:
Background Epidemiological and clinical studies suggest comorbidity between prostate cancer (PCA) and cardiovascular disease (CVD) risk factors. However, the relationship between these two phenotypes is still not well understood. Here we sought to identify shared genetic loci between PCA and CVD risk factors. Methods We applied a genetic epidemiology method based on conjunction false discovery rate (FDR) that combines summary statistics from different genome-wide association studies (GWAS), and allows identification of genetic overlap between two phenotypes. We evaluated summary statistics from large, multi-centre GWA studies of PCA (n = 50 000) and CVD risk factors (n = 200 000) [triglycerides (TG), low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol, systolic blood pressure, body mass index, waist-hip ratio and type 2 diabetes (T2D)]. Enrichment of single nucleotide polymorphisms (SNPs) associated with PCA and CVD risk factors was assessed with conditional quantile-quantile plots and the Anderson-Darling test. Moreover, we pinpointed shared loci using conjunction FDR. Results We found the strongest enrichment of P-values in PCA was conditional on LDL and conditional on TG. In contrast, we found only weak enrichment conditional on HDL or conditional on the other traits investigated. Conjunction FDR identified altogether 17 loci; 10 loci were associated with PCA and LDL, 3 loci were associated with PCA and TG and additionally 4 loci were associated with PCA, LDL and TG jointly (conjunction FDR < 0.01). For T2D, we detected one locus adjacent to HNF1B. Conclusions We found polygenic overlap between PCA predisposition and blood lipids, in particular LDL and TG, and identified 17 pleiotropic gene loci between PCA and LDL, and PCA and TG, respectively. These findings provide novel pathobiological insights and may have implications for trials using targeting lipid-lowering agents in a prevention or cancer setting.
Resumo:
Men receiving androgen deprivation therapy (ADT) for prostate cancer (PCa) are likely to develop metabolic conditions such as diabetes, cardiovascular disease, abdominal obesity and osteoporosis. Other treatment-related side effects adversely influence quality of life (QoL) including vasomotor distress, depression, anxiety, mood swings, poor sleep quality and compromised sexual function. The objective of this study was to systematically review the nature and effects of dietary and exercise interventions on QoL, androgen deprivation symptoms and metabolic risk factors in men with PCa undergoing ADT. An electronic search of CINAHL, CENTRAL, Medline, PsychINFO and reference lists was performed to identify peer-reviewed articles published between January 2004 and December, 2014 in English. Eligible study designs included randomised controlled trials with pre- and post-intervention data. Data extraction and assessment of methodological quality with the Cochrane approach was conducted by two independent reviewers. Seven exercise studies were identified. Exercise significantly improved QoL, but showed no effect on metabolic risk factors (weight, waist circumference, lean or fat mass, blood pressure, lipid profile). Two dietary studies were identified, both of which tested soy supplements. Soy supplementation did not improve any outcomes. No dietary counselling studies were identified. No studies evaluated androgen-deficiency symptoms (libido, erectile function, sleep quality, mood swings, depression, anxiety, bone mineral density). Evidence from RCTs indicates that exercise enhances health- and disease-specific QoL in men with PCa undergoing ADT. Further studies are required to evaluate the effect of exercise and dietary interventions on QoL, androgen deprivation symptoms and metabolic risk factors in this cohort.
Resumo:
Obesity has long been linked with prostate cancer progression, although the underlying mechanism is still largely unknown. Here, we report that adipocytes promote the enrichment of prostate cancer stem cells (CSCs) through a vicious cycle of autocrine amplification. In the presence of adipocytes, prostate cancer cells actively secrete the peptide hormone cholecystokinin (CCK), which not only stimulates prostate CSC self-renewal, but also induces cathepsin B (CTSB) production of the adipocytes. In return, CTSB facilitates further CCK secretion by the cancer cells. More importantly, inactivation of CCK receptor not only suppresses CTSB secretion by the adipocytes, but also synergizes the inhibitory effect of CTSB inhibitor on adipocyte-promoted prostate CSC self-renewal. In summary, we have uncovered a novel mechanism underlying the mutual interplay between adipocytes and prostate CSCs, which may help explaining the role of adipocytes in prostate cancer progression and provide opportunities for effective intervention.
Resumo:
Obesity and metabolic syndrome are associated with several cancers, however, the molecular mechanisms remain to be fully elucidated. Recent studies suggest that hypercholesterolemia increases intratumoral androgen signaling in prostate cancer, but it is unclear whether androgenindependent mechanisms also exist. Since hypercholesterolemia is associated with advanced, castrate-resistant prostate cancer, in this study, we aimed to determine whether and how hypercholesterolemia affects prostate cancer progression in the absence of androgen signaling. We demonstrate that diet-induced hypercholesterolemia promotes orthotopic xenograft PC-3 cell metastasis, concomitant with elevated expression of caveolin-1 and IQGAP1 in xenograft tumor tissues. In vitro cholesterol treatment of PC-3 cells stimulated migration and increased IQGAP1 and caveolin-1 protein level and localization to a detergent-resistant fraction. Down-regulation of caveolin-1 or IQGAP1 in PC-3 cells reduced migration and invasion in vitro, and hypercholesterolemia-induced metastasis in vivo. Double knock-down of caveolin-1 and IQGAP1 showed no additive effect, suggesting that caveolin-1 and IQGAP1 act via the same pathway. Taken together, our data show that hypercholesterolemia promotes prostate cancer metastasis independent of the androgen pathway, in part by increasing IQGAP1 and caveolin-1. These results have broader implications for managing metastasis of cancers in general as IQGAP1 and hypercholesterolemia are implicated in the progression of several cancers.
Resumo:
A national prostate cancer specialist nursing pilot program, supported by Prostate Cancer Foundation of Australia, was launched in May 2012 with funding support from The Movember Foundation. The pilot program aimed to trial a best practice model for providing specialist nursing care to those affected by prostate cancer. Prostate cancer specialist nurses were allocated to 12 hospitals across all Australian states and territories to work in the context of multidisciplinary care. The Prostate Cancer Foundation provided professional development support for nurses through a structured program. This article presents key outcomes from the research commissioned by the Prostate Cancer Foundation to evaluate the prostate cancer specialist nurse role. Specifically, the paper reports evaluation data relating to the roles and functions of the prostate cancer specialist nurse to explore the influence of the role on outcomes for patients, carers and services.
Resumo:
BACKGROUND: The objective of this study was to describe prospectively quality of life (QOL) before and after radiotherapy for patients with prostate carcinoma. METHODS: Forty-three patients with T1-T3 prostate carcinoma who underwent conformal external beam radiation therapy were randomized either to the complete European Organization for Research and Treatment of Cancer (EORTC) QOL questionnaire (EORTC QLQ-C30) or the Medical Outcomes Study Group Short Form Health Survey (SF-36) at baseline, at 3 weeks and 6 weeks after initial treatment, and at 6 weeks and 5 months after the completion of radiotherapy. The measures were self-reported patient QOL, and values are given as the mean +/- standard error of the mean. Changes in QOL are described from baseline to the end of treatment in both questionnaire groups. RESULTS: Emotional role functioning, as measured with the SF-36 questionnaire, significantly improved from 68.2 +/- 9.9 at baseline to 93.3 +/- 5.2 at the end of therapy (P = 0.02). The EORTC QLQ-C30 questionnaire revealed consistent values of emotional functioning during treatment (72.7 +/- 5.9 at baseline) but showed a significant improvement 6 weeks after therapy (89.0 +/- 4.4; P = 0.01). Role functioning deteriorated from 80.1 +/- 6.5 at baseline to 62.5 +/- 8.8 at the end of radiotherapy (P = 0.02). Symptoms of fatigue were shown to increase significantly from 26.9 +/- 6.0 at baseline to 37.7 +/- 7.6 at the end of therapy (P = 0.02). No significant changes in the other dimensions were observed in either questionnaire. CONCLUSIONS: After radiotherapy for prostate carcinoma, patients experience a temporary deterioration of fatigue and role functioning, as measured with the EORTC QLQ-C-30. Despite physical deterioration, the authors observed an improvement in emotional functioning scores with both questionnaires. This may have been due to psychological adaptation and coping.