990 resultados para Vehicle Safety
Resumo:
An IDPH Occupational Health and Safety Surveillance Program (OHSSP) analysis of Iowa’s work-related traumatic fatalities shows that transportation events accounted for 48 of 90 deaths in 2011. Agricultural activities were involved in 21 of the 48 transportation deaths (44%) and 32 of the 90 total fatalities (36%). Tractor and ATV (all-terrain vehicle) or UTV (utility vehicle) rollovers were responsible for 62% (13/21) of the farm or ag-related transportation deaths.
Resumo:
Recent trends (1980-2007) in mortality from road traffic crashes in European countries, and, for comparative purposes, in the USA and Japan were reviewed. Data came from the World Health Organisation database. Age-standardised rates, at all ages and at 15-24, 25-64, >=65 years, were computed. Joinpoint regression analyses to evaluate significant changes in trends were performed. In the European Union as a whole rates declined from 20.2 in 1987 to 13.5/100,000 in 2007 in men, and from 6.3 to 3.7/100,000 in women; European Union rates remained lower than USA, but higher than Japanese ones. In 2007, the highest male rates were in Lithuania (36.7/100,000), the Russian Federation (35.2), Ukraine (29.8), and Latvia (28.5), and the lowest ones in the Netherlands (6.2) and Sweden (6.9); the highest female rates were in the Russian Federation (11.3), Lithuania (9.7), Belarus, Latvia, and Ukraine (around 8), and the lowest ones in Switzerland (1.7), the UK, and Nordic countries (around 2). Mortality from motor vehicle crashes declined in northern and western European countries and - though to a lesser extent - in southern European countries, too. Mortality trends were also favourable in the Czech Republic and Poland since the mid 1990's, whereas they were still upwards in Romania and the Russian Federation. No trend was observed in Hungary and Ukraine. Trends were consistent in various age groups considered. Thus, additional urgent and integrated intervention is required to prevent avoidable deaths from motor vehicle crashes, particularly in selected central and eastern European countries.
Resumo:
Purpose The purpose of the present study was to evaluate the retinal toxicity of a single dose of intravitreal docosahexaenoic acid (DHA) in rabbit eyes over a short-term period. Methods Sixteen New Zealand albino rabbits were selected for this pre-clinical study. Six concentrations of DHA (Brudy Laboratories, Barcelona, Spain) were prepared: 10 mg/50 µl, 5 mg/50 µl, 2'5 mg/50 µl, 50 µg/50 µl, 25 µg/50 µl, and 5 µg/50 µl. Each concentration was injected intravitreally in the right eye of two rabbits. As a control, the vehicle solution was injected in one eye of four animals. Retinal safety was studied by slit-lamp examination, and electroretinography. All the rabbits were euthanized one week after the intravitreal injection of DHA and the eyeballs were processed to morphologic and morphometric histological examination by light microscopy. At the same time aqueous and vitreous humor samples were taken to quantify the concentration of omega-3 acids by gas chromatography. Statistical analysis was performed by SPSS 21.0. Results Slit-lamp examination revealed an important inflammatory reaction on the anterior chamber of the rabbits injected with the higher concentrations of DHA (10 mg/50 µl, 5 mg/50 µl, 2'5 mg/50 µ) Lower concentrations showed no inflammation. Electroretinography and histological studies showed no significant difference between control and DHA-injected groups except for the group injected with 50 µg/50 µl. Conclusions Our results indicate that administration of intravitreal DHA is safe in the albino rabbit model up to the maximum tolerated dose of 25 µg/50 µl. Further studies should be performed in order to evaluate the effect of intravitreal injection of DHA as a treatment, alone or in combination, of different retinal diseases.
Resumo:
The challenge of reducing carbon emission and achieving emission target until 2050, has become a key development strategy of energy distribution for each country. The automotive industries, as the important portion of implementing energy requirements, are making some related researches to meet energy requirements and customer requirements. For modern energy requirements, it should be clean, green and renewable. For customer requirements, it should be economic, reliable and long life time. Regarding increasing requirements on the market and enlarged customer quantity, EVs and PHEV are more and more important for automotive manufactures. Normally for EVs and PHEV there are two important key parts, which are battery package and power electronics composing of critical components. A rechargeable battery is a quite important element for achieving cost competitiveness, which is mainly used to story energy and provide continue energy to drive an electric motor. In order to recharge battery and drive the electric motor, power electronics group is an essential bridge to convert different energy types for both of them. In modern power electronics there are many different topologies such as non-isolated and isolated power converters which can be used to implement for charging battery. One of most used converter topology is multiphase interleaved power converter, pri- marily due to its prominent advantages, which is frequently employed to obtain optimal dynamic response, high effciency and compact converter size. Concerning its usage, many detailed investigations regarding topology, control strategy and devices have been done. In this thesis, the core research is to investigate some branched contents in term of issues analysis and optimization approaches of building magnetic component. This work starts with an introduction of reasons of developing EVs and PEHV and an overview of different possible topologies regarding specific application requirements. Because of less components, high reliability, high effciency and also no special safety requirement, non-isolated multiphase interleaved converter is selected as the basic research topology of founded W-charge project for investigating its advantages and potential branches on using optimized magnetic components. Following, all those proposed aspects and approaches are investigated and analyzed in details in order to verify constrains and advantages through using integrated coupled inductors. Furthermore, digital controller concept and a novel tapped-inductor topology is proposed for multiphase power converter and electric vehicle application.
Resumo:
Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.
Resumo:
This paper reviews the effectiveness of vehicle activated signs. Vehicle activated signs are being reportedly used in recent years to display dynamic information to road users on an individual basis in order to give a warning or inform about a specific event. Vehicle activated signs are triggered individually by vehicles when a certain criteria is met. An example of such criteria is to trigger a speed limit sign when the driver exceeds a pre-set threshold speed. The preset threshold is usually set to a constant value which is often equal, or relative, to the speed limit on a particular road segment. This review examines in detail the basis for the configuration of the existing sign types in previous studies and explores the relation between the configuration of the sign and their impact on driver behavior and sign efficiency. Most of previous studies showed that these signs have significant impact on driver behavior, traffic safety and traffic efficiency. In most cases the signs deployed have yielded reductions in mean speeds, in speed variation and in longer headways. However most experiments reported within the area were performed with the signs set to a certain static configuration within applicable conditions. Since some of the aforementioned factors are dynamic in nature, it is felt that the configurations of these signs were thus not carefully considered by previous researchers and there is no clear statement in the previous studies describing the relationship between the trigger value and its consequences under different conditions. Bearing in mind that different designs of vehicle activated signs can give a different impact under certain conditions of road, traffic and weather conditions the current work suggests that variable speed thresholds should be considered instead.
Resumo:
There has been a rapid increase in the complexity and integration of many safety-critical systems. In consequence, it is becoming increasingly difficult to identify the causes of incidents and accidents back through the complex interactions that lead to an adverse event. At the same time, there is a growing appreciation of the need to consider a broad range of contextual factors in the aftermath of any mishap. A number of regulators, operators and research teams have responded to these developments by proposing novel techniques to support the analysis of complex, safety-critical incidents. It is important to illustrate these different approaches by applying them to a number of common case studies. The following pages, therefore, show how STAMP and AcciMap might support the Serviço Público Federal investigation into the explosion and fire of the Brazilian launch vehicle VLS-1 VO3. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Road accidents cause more deaths than homicides in Latin America, nevertheless it is not highlighted as a major concern by media and society. World Health Organization put this issue in high priority by releasing the Decade of Action in Road Safety that establishes five pillars to guide national road safety plans and activities. This paper addresses the drawbacks in the implementation of these actions in Latin American countries and its implications to achieve a sustainable development. The main concerns are: lack of empowerment of the road safety management organisations; lower vehicular standards; corruption related to the enforcement of traffic safety laws to and to the construction of safer roads; absence of safety vehicular inspections; vehicle fleet increase, decrease of public transportation demand; and the absence of a safety culture. Without facing these problems, sustainable development in Latin America will be impaired, once road safety is a fundamental link to achieve sustainability.
Resumo:
Context: Hibiscus sabdariffa L. (Malvaceae) is a species widely used in folk medicine for the treatment of some disorders. Objective: This study evaluated the effects of H. sabdariffa (HS) on the development of the male reproductive tract in rats following in utero exposure. Materials and methods: Pregnant rats received 250 or 500 mg/kg of HS extract or vehicle from gestational day 12 until day 21 of lactation. Results and discussion: Both doses of HS increased the body weight of male offspring at weaning, without compromising the puberty onset parameters. At puberty, there was a significant increase in the vas deferens absolute weight and a significant reduction in the relative weight of kidney at higher dose. These animals also presented a significant reduction in the sperm number in the caput/corpus of epididymis after exposure to both doses and a reduction in the sperm number in the cauda epididymis for the lower dose. At adulthood, the highest dose significantly reduced the sperm production in relation to controls and both doses provoked a reduction in the relative sperm number in the epididymis without affecting the sperm morphology. Conclusion: These findings demonstrated that maternal exposure to H. sabdariffa can adversely influence the male reproductive system in rats.
Resumo:
The dissertation titled "Driver Safety in Far-side and Far-oblique Crashes" presents a novel approach to assessing vehicle cockpit safety by integrating Human Factors and Applied Mechanics. The methodology of this approach is aimed at improving safety in compact mobile workspaces such as patrol vehicle cockpits. A statistical analysis performed using Michigan state's traffic crash data to assess various contributing factors that affect the risk of severe driver injuries showed that the risk was greater for unrestrained drivers (OR=3.38, p<0.0001) and for incidents involving front and far-side crashes without seatbelts (OR=8.0 and 23.0 respectively, p<0.005). Statistics also showed that near-side and far-side crashes pose similar threat to driver injury severity. A Human Factor survey was conducted to assess various Human-Machine/Human-Computer Interaction aspects in patrol vehicle cockpits. Results showed that tasks requiring manual operation, especially the usage of laptop, would require more attention and potentially cause more distraction. A vehicle survey conducted to evaluate ergonomics-related issues revealed that some of the equipment was in airbag deployment zones. In addition, experiments were conducted to assess the effects on driver distraction caused by changing the position of in-car accessories. A driving simulator study was conducted to mimic HMI/HCI in a patrol vehicle cockpit (20 subjects, average driving experience = 5.35 years, s.d. = 1.8). It was found that the mounting locations of manual tasks did not result in a significant change in response times. Visual displays resulted in response times less than 1.5sec. It can also be concluded that the manual task was equally distracting regardless of mounting positions (average response time was 15 secs). Average speeds and lane deviations did not show any significant results. Data from 13 full-scale sled tests conducted to simulate far-side impacts at 70 PDOF and 40 PDOF was used to analyze head injuries and HIC/AIS values. It was found that accelerations generated by the vehicle deceleration alone were high enough to cause AIS 3 - AIS 6 injuries. Pretensioners could mitigated injuries only in 40 PDOF (oblique) impacts but are useless in 70 PDOF impacts. Seat belts were ineffective in protecting the driver's head from injuries. Head would come in contact with the laptop during a far-oblique (40 PDOF) crash and far-side door for an angle-type crash (70 PDOF). Finite Element analysis head-laptop impact interaction showed that the contact velocity was the most crucial factor in causing a severe (and potentially fatal) head injury. Results indicate that no equipment may be mounted in driver trajectory envelopes. A very narrow band of space is left in patrol vehicles for installation of manual-task equipment to be both safe and ergonomic. In case of a contact, the material stiffness and damping properties play a very significant role in determining the injury outcome. Future work may be done on improving the interiors' material properties to better absorb and dissipate kinetic energy of the head. The design of seat belts and pretensioners may also be seen as an essential aspect to be further improved.
Resumo:
Background/Study Context: Older drivers are at increased risk of becoming involved in car crashes. Contrary to well-studied illness-related factors contributing to crash risk, the non-illness-related factors that can influence safety of older drivers are underresearched. METHODS: Here, the authors review the literature on non-illness-related factors influencing driving in people over age 60. We identified six safety-relevant factors: road infrastructure, vehicle characteristics, traffic-related knowledge, accuracy of self-awareness, personality traits, and self-restricted driving. RESULTS: The literature suggests that vehicle preference, the quality of traffic-related knowledge, the location and time of traffic exposure, and personality traits should all be taken into account when assessing fitness-to-drive in older drivers. Studies indicate that self-rating of driving skills does not reliably predict fitness-to-drive. CONCLUSIONS: Most factors discussed are adaptable or accessible to training and collectively may have the potential to increase traffic safety for older drivers and other road users.
Resumo:
In this paper, vehicle-track interaction for a new slab track design, conceived to reduce noise and vibration levels has been analyzed, assessing the derailment risk for trains running on curved track when encountering a broken rail. Two different types of rail fastening systems with different elasticities have been analysed and compared. Numerical methods were used in order to simulate the dynamic behaviour of the train-track interaction. Multibody system (MBS) modelling techniques were combined with techniques based on the finite element method (FEM). MBS modelling was used for modelling the vehicle and FEM for simulating the elastic track. The simulation model was validated by comparing simulated results to experimental data obtained in field testing. During the simulations various safety indices, characteristic of derailment risk, were analysed. The simulations realised at the maximum running velocity of 110 km/h showed a similar behaviour for several track types. When reducing the running speed, the safety indices worsened for both cases. Although the worst behaviour was observed for the track with a greater elasticity, in none of the simulations did a derailment occur when running over the broken rail.
Resumo:
Vehicle–track interaction for a new resilient slab track designed to reduce noise and vibration levels was analysed, in order to assess the derailment risk on a curved track when encountering a broken rail. Sensitivity of the rail support spacing of the relative position of the rail breakage between two adjacent rail supports and of running speed were analysed for two different elasticities of the rail fastening system. In none of the cases analysed was observed an appreciable difference between either of the elastic systems. As was expected, the most unfavourable situations were those with greater rail support spacing and those with greater distance from the breakage to the nearest rail support, although in none of the simulations performed did a derailment occur when running over the broken rail. When varying the running speed, the most favourable condition was obtained for an intermediate speed, due to the superposition of two antagonistic effects.
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
streets in local residential areas in large cities, real traffic tests for pollutant emissions and fuel consumption have been carried out in Madrid city centre. Emission concentration and car activity were simultaneously measured by a Portable Emissions Measurement System. Real life tests carried out at different times and on different days were performed with a turbo-diesel engine light vehicle equipped with an oxidizer catalyst and using different driving styles with a previously trained driver. The results show that by reducing the speed limit from 50 km h-1 to 30 km h-1, using a normal driving style, the time taken for a given trip does not increase, but fuel consumption and NOx, CO and PM emissions are clearly reduced. Therefore, the main conclusion of this work is that reducing the speed limit in some narrow streets in residential and commercial areas or in a city not only increases pedestrian safety, but also contributes to reducing the environmental impact of motor vehicles and reducing fuel consumption. In addition, there is also a reduction in the greenhouse gas emissions resulting from the combustion of the fuel.