988 resultados para VSG expression site


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of phase 2 detoxification enzymes by phenolic antioxidants can account for prevention of tumor initiation but cannot explain why these compounds inhibit tumor promotion. Phase 2 genes are induced through an antioxidant response element (ARE). Although the ARE resembles an AP-1 binding site, we show that the major ARE binding and activating protein is not AP-1. Interestingly, AP-1 DNA binding activity was induced by the phenolic antioxidant tert-butylhydroquinone (BHQ), but the induction of AP-1 transcriptional activity by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) was inhibited by this compound. BHQ induced expression of c-jun, junB, fra-1, and fra-2, which encode AP-1 components, but was a poor inducer of c-fos and had no effect on fosB. Like c-Fos and FosB, the Fra proteins heterodimerize with Jun proteins to form stable AP-1 complexes. However, Fra-containing AP-1 complexes have low transactivation potential. Furthermore, Fra-1 repressed AP-1 activity induced by either TPA or expression of c-Jun and c-Fos. We therefore conclude that inhibitory AP-1 complexes composed of Jun-Fra heterodimers, induced by BHQ, antagonize the transcriptional effects of the tumor promoter TPA, which are mediated by Jun-Fos heterodimers. Since AP-1 is an important mediator of tumor promoter action, these findings may explain the anti-tumor-promoting activity of phenolic antioxidants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and physical signals have been reported to mediate wound-induced proteinase inhibitor II (Pin2) gene expression in tomato and potato plants. Among the chemical signals, phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and the peptide systemin represent the best characterized systems. Furthermore, electrical and hydraulic mechanisms have also been postulated as putative Pin2-inducing systemic signals. Most of the chemical agents are able to induce Pin2 gene expression without any mechanical wounding. Thus, ABA, JA, and systemin initiate Pin2 mRNA accumulation in the directly treated leaves and in the nontreated leaves (systemic) that are located distal to the treated ones. ABA-deficient tomato and potato plants do not respond to wounding by accumulation of Pin2 mRNA, therefore providing a suitable model system for analysis of the signal transduction pathway involved in wound-induced gene activation. It was demonstrated that the site of action of JA is located downstream to the site of action of ABA. Moreover, systemin represents one of the initial steps in the signal transduction pathway regulating the wound response. Recently, it was reported that heat treatment and mechanical injury generate electrical signals, which propagate throughout the plant. These signals are capable of inducing Pin2 gene expression in the nontreated leaves of wounded plants. Furthermore, electrical current application to tomato leaves leads to an accumulation of Pin2 mRNA in local and systemic tissues. Examination of photosynthetic parameters (assimilation and transpiration rate) on several types of stimuli suggests that heat-induced Pin2 gene expression is regulated by an alternative pathway from that mediating the electrical current and mechanical wound response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have explored the feasibility of using a "double-tagging" assay for assessing which amino acids of a protein are responsible for its binding to another protein. We have chosen the adenovirus E1A-retinoblastoma gene product (pRB) proteins for a model system, and we focused on the high-affinity conserved region 2 of adenovirus E1A (CR2). We used site-specific mutagenesis to generate a mutant E1A gene with a lysine instead of an aspartic acid at position 121 within the CR2 site. We demonstrated that this mutant exhibited little binding to pRB by the double-tagging assay. We also have shown that this lack of binding is not due to any significant decrease in the level of expression of the beta-galactosidase-E1A fusion protein. We then created a "library" of phage expressing beta-galactosidase-E1A fusion proteins with a variety of different mutations within CR2. This library of E1A mutations was used in a double-tagging screening to identify mutant clones that bound to pRB. Three classes of phage were identified: the vast majority of clones were negative and exhibited no binding to pRB. Approximately 1 in 10,000 bound to pRB but not to E1A ("true positives"). A variable number of clones appeared to bind equally well to both pRB and E1A ("false positives"). The DNA sequence of 10 true positive clones yielded the following consensus sequence: DLTCXEX, where X = any amino acid. The recovery of positive clones with only one of several allowed amino acids at each position suggests that most, if not all, of the conserved residues play an important role in binding to pRB. On the other hand, the DNA sequence of the negative clones appeared random. These results are consistent with those obtained from other sources. These data suggest that a double-tagging assay can be employed for determining which amino acids of a protein are important for specifying its interaction with another protein if the complex forms within bacteria. This assay is rapid and up to 1 x 10(6) mutations can be screened at one time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pax-6 is essential for normal eye development and has been implicated as a "master gene" for lens formation in embryogenesis. Guinea pig zeta-crystallin, a taxon-specific enzyme crystallin, achieves high expression specifically in lens through use of an alternative promoter. Here we show that Pax-6 binds a site in this promoter, which is essential for lens-specific expression. Lens and lens-derived cells exhibit a tissue-specific pattern of alternative splicing of Pax-6 transcripts and Pax-6 is expressed in adult lenses and cells that support zeta-crystallin expression. These results suggest that zeta-crystallin is a natural target gene for Pax-6 and that this Pax family member has a direct role in the continuing expression of tissue-specific genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is the most common form of inherited mental retardation in humans. FXS is caused by loss of the Fragile X Mental Retardation Protein (FMRP), an important regulator of neuronal mRNA translation. Patients with FXS display cognitive deficits including memory problems. Protein synthesis-dependent long-term changes in synaptic plasticity are involved in the establishment and maintenance of long-term memory. One prevalent theory of FXS pathology predicts that FMRP is required to negatively regulate the translation of important mRNAs at the synapse. We are investigating microRNAs (miRNAs) as a potential regulator of synaptic FMRP-regulated mRNAs that have previously been described as being crucial to the process of synaptic plasticity. The general hypothesis underlying this thesis is that FMRP may negatively regulate the expression of futsch (the Drosophila homologue of the microtubule-associated protein gene MAP1B) via the miRNA pathway. The first step we took in testing this hypothesis was to confirm that futsch is subject to miRNA-mediated translational control. Using in silico target analysis, we predicted that several neuronally expressed miRNAs target the futsch mRNA 3'UTR and repress expression of Futsch protein. Then, using an in vitro luciferase reporter system, we showed that miR-315 and members of the miR-9 family selectively down-regulated futsch reporter translation. We have confirmed by site- directed mutagenesis that the miRNA interaction with the futsch 3'UTR is specific to the miRNA seed region binding site. Interestingly, reduction of FMRP levels by RNAi had no effect on futsch 3'UTR reporter expression. Together, these data suggest regulation of futsch expression by the miRNA pathway might be independent of FMRP activity. However, additional experiments need to be completed to confirm these preliminary results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tartrate-resistant acid phosphatase (TRAP) is highly expressed in osteoclasts and in a subset of tissue macrophages and dendritic cells. It is expressed at lower levels in the parenchymal cells of the liver, glomerular mesangial cells of the kidney and pancreatic acinar cells. We have identified novel TRAP mRNAs that differ in their 5-untranslated region (5'-UTR) sequence, but align with the known murine TRAP mRNA from the first base of Exon 2. The novel 5'-UTRs represent alternative first exons located upstream of the known 5'-UTR. A similar genomic structure exists for the human TRAP gene with partial conservation of the exon and promoter sequences. Expression of the most distal 5'-UTR (Exon 1A) is restricted to adult bone and spleen tissue. Exon 1B is expressed primarily in tissues containing TRAP-positive nonhaematopoietic cells. The known TRAP 5'-UTR (Exon 1) is expressed in tissues characteristic of myeloid cell expression. In addition the Exon 1C promoter sequence is shown to comprise distinct transcription start regions, with an osteoclast-specific transcription initiation site identified downstream of a TATA-like element. Macrophages are shown to initiate transcription of the Exon 1C transcript from a purine-rich region located upstream of the osteoclast-specific transcription start point. The distinct expression patterns for each of the TRAP 5'-UTRs suggest that TRAP mRNA expression is regulated by the use of four alternative tissue- and cell-restricted promoters. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To increase transient expression of recombinant proteins in Chinese hamster ovary cells, we have engineered their protein synthetic capacity by directed manipulation of mRNA translation initiation. To control this process we constructed a nonphosphorylatable Ser51Ala site-directed mutant of eIF2, a subunit of the trimeric eIF2 complex that is implicated in regulation of the global rate of mRNA translation initiation in eukaryotic cells. Phosphorylation of eIF2 by protein kinases inhibits eIF2 activity and is known to increase as cells perceive a range of stress conditions. Using single-and dual-gene plasmids introduced into CHO cells by electroporation, we found that transient expression of the eIF2 Ser51Ala mutant with firefly luciferase resulted in a 3-fold increase in reporter activity, relative to cells transfected with reporter only. This effect was maintained in transfected cells for at least 48 h after transfection. Expression of the wild-type eIF2 protein had no such effect. Elevated luciferase activity was associated with a reduction in the level of eIF2 phosphorylation in cells transfected with the mutant eIF2 construct. Transfection of CHO cells with the luciferase-only construct resulted in a marked decrease in the global rate of protein synthesis in the whole cell population 6 h post-transfection. However, expression of the mutant Ser51Ala or wild-type eIF2 proteins restored the rate of protein synthesis in transfected cells to a level equivalent to or exceeding that of control cells. Associated with this, entry of plasmid DNA into cells during electroporation was visualized by confocal microscopy using a rhodamine-labeled plasmid construct expressing green fluorescent protein. Six hours after transfection, plasmid DNA was present in all cells, albeit to a variable extent. These data suggest that entry of naked DNA into the cell itself functions to inhibit protein synthesis by signaling mechanisms affecting control of mRNA translation by eIF2. This work therefore forms the basis of a rational strategy to generically up-regulate transient expression of recombinant proteins by simultaneous host cell engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim was to investigate the roles of proline residues in extracellular loop 2 (P172, P183, P188 and P209) and transmembrane domains 2, 5, 11 and 12 (P108, P270, P526, P551, P552 and P570) in determining noradrenaline transporter (NET) expression and function. Mutants of human NET with these residues mutated to alanine were pharmacologically characterized. Mutation of P108, P270 and P526 disrupted cell surface expression, from [H-3]nisoxetine binding and confocal microscopy data. Mutations of P526, P551 and P570 reduced transporter turnover (V-max of [H-3]noradrenaline uptake/B-max of [H-3]nisoxetine binding) by 1.5-1.7-fold compared with wild-type NET, so these residues might be involved in conformational changes associated with substrate translocation. Conversely, mutations of P172, P183, P188 and P209 increased V-max/B-max by 2-3-fold compared with wild-type, indicating that the presence of these proline residues limits turnover of the NET. The mutations had few effects on apparent affinities of substrates or affinities of inhibitors, except decreases in inhibitor affinities after mutations of the P270 and P570 residues, and increases after mutation of the P526 residue. Hence, proline residues in extracellular loop 2 and in transmembrane domains have a range of roles in determining expression and function of the NET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By establishing mouse primary keratinocytes (KCs) in culture, we were able, for the first time, to express papillomavirus major capsid (L1) proteins by transient transfection of authentic or codon-modified L1 gene expression plasmids. We demonstrate in vitro and in vivo that gene codon composition is in part responsible for differentiation-dependent expression of L1 protein in KCs. L1 mRNA was present in similar amounts in differentiated and undifferentiated KCs transfected with authentic or codon-modified L1 genes and had a similar half-life, demonstrating that L1 protein production is posttranscriptionally regulated. We demonstrate further that KCs substantially change their tRNA profiles upon differentiation. Aminoacyl-tRNAs from differentiated KCs but not undifferentiated KCs enhanced the translation of authentic L1 mRNA, suggesting that differentiation-associated change to tRNA profiles enhances L1 expression in differentiated KCs. Thus, our data reveal a novel mechanism for regulation of gene expression utilized by a virus to direct viral capsid protein expression to the site of virion assembly in mature KCs. Analysis of two structural proteins of KCs, involucrin and keratin 14, suggests that translation of their mRNAs is also regulated, in association with KC differentiation in vitro, by a similar mechanism

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of the mouse transcription factor EC (Tfec) is restricted to the myeloid compartment, suggesting a function for Tfec in the development or function of these cells. However, mice lacking Tfec develop normally, indicating a redundant role for Tfec in myeloid cell development. We now report that Tfec is specifically induced in bone marrow-derived macrophages upon stimulation with the Th2 cytokines, IL-4 and IL-13, or LPS. LPS induced a rapid and transient up-regulation of Tfec mRNA expression and promoter activity, which was dependent on a functional NF-kappa B site. IL-4, however, induced a rapid, but long-lasting, increase in Tfec mRNA, which, in contrast to LPS stimulation, also resulted in detectable levels of Tfec protein. IL-4-induced transcription of Tfec was absent in macrophages lacking Stat6, and its promoter depended on two functional Stat6-binding sites. A global comparison of IL-4-induced genes in both wild-type and Tfec mutant macrophages revealed a surprisingly mild phenotype with only a few genes affected by Tfec deficiency. These included the G-CSFR (Csf3r) gene that was strongly up-regulated by IL-4 in wild-type macrophages and, to a lesser extent, in Tfec mutant macrophages. Our study also provides a general definition of the transcriptome in alternatively activated mouse macrophages and identifies a large number of novel genes characterizing this cell type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.