904 resultados para VEGF RECEPTOR 2
Resumo:
Mycoplasma bovis is an emerging bacterial agent causing bovine mastitis. Although these cell wall-free bacteria lack classical virulence factors, they are able to activate the immune system of the host. However, effects on the bovine mammary immune system are not yet well characterized and detailed knowledge would improve the prevention and therapy of mycoplasmal mastitis. The aim of this study was to investigate the immunogenic effects of M. bovis on the mammary gland in an established primary bovine mammary epithelial cell (bMEC) culture system. Primary bMEC of four different cows were challenged with live and heat-inactivated M. bovis strain JF4278 isolated from acute bovine mastitis, as well as with the type strain PG45. The immune response was evaluated 6 and 24h after mycoplasmal challenge by measuring the relative mRNA expression of selected immune factors by quantitative PCR. M. bovis triggered an immune response in bMEC, reflected by the upregulation of tumor necrosis factor-α, interleukin(IL)-1β, IL-6, IL-8, lactoferrin, Toll-like receptor-2, RANTES, and serum amyloid A mRNA. Interestingly, this cellular reaction was only observed in response to live, but not to heat-inactivated M. bovis, in contrast to other bacterial pathogens of mastitis such as Staphylococcus aureus. This study provides evidence that bMEC exhibit a strong inflammatory reaction in response to live M. bovis. The lack of a cellular response to heat-inactivated M. bovis supports the current hypothesis that mycoplasmas activate the immune system through secreted secondary metabolites.
Resumo:
Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron excitability and spinal circuits are pathological hallmarks of ALS, but the underlying molecular mechanisms remain unresolved. Here, we sought to understand whether the expression of mutant SOD1 protein could contribute to altering processes governing motor neuron excitability. We used the conformation specific antibody B8H10 which recognizes a misfolded state of SOD1 (misfSOD1) to longitudinally identify its interactome during early disease stage in SOD1G93A mice. This strategy identified a direct isozyme-specific association of misfSOD1 with Na+/K+ATPase-α3 leading to the premature impairment of its ATPase activity. Pharmacological inhibition of Na+/K+ATPase-α3 altered glutamate receptor 2 expression, modified cholinergic inputs and accelerated disease pathology. After mapping the site of direct association of misfSOD1 with Na+/K+ATPase-α3 onto a 10 amino acid stretch that is unique to Na+/K+ATPase-α3 but not found in the closely related Na+/K+ATPase-α1 isozyme, we generated a misfSOD1 binding deficient, but fully functional Na+/K+ATPase-α3 pump. Adeno associated virus (AAV)-mediated expression of this chimeric Na+/K+ATPase-α3 restored Na+/K+ATPase-α3 activity in the spinal cord, delayed pathological alterations and prolonged survival of SOD1G93A mice. Additionally, altered Na+/K+ATPase-α3 expression was observed in the spinal cord of individuals with sporadic and familial ALS. A fraction of sporadic ALS cases also presented B8H10 positive misfSOD1 immunoreactivity, suggesting that similar mechanism might contribute to the pathology.
Resumo:
INTERACTION BETWEEN BRK AND HER2 IN BREAST CANCER Midan Ai, Ph.D. Supervisory Professor: Zhen Fan, M.D. Breast tumor kinase (Brk) is a nonreceptor protein-tyrosine kinase that is highly expressed in approximately two thirds of breast cancers but is not detectable or is expressed at very low levels in normal mammary epithelium. Brk plays important roles in promoting proliferation, survival, invasion, and metastasis of breast cancer cells, but the mechanism(s) of which remain largely unknown. Recent studies showed that Brk is frequently co-overexpressed with human epidermal growth factor receptor-2 (HER2) and is physically associated with HER2 in breast cancer. The mechanism needs to be determined. In my studies, I found that high expression of HER2 is correlated with high expression of Brk in breast cancer cell lines. Silencing HER2 expression via RNA interference in HER2 over-expressed breast cancer cells resulted in Brk protein decrease and overexpression of HER2 in HER2 low-expressed breast cancer cells up-regulated Brk expression. The mechanism study indicated that overexpression of HER2 increased Brk protein stability. Brk was degraded through a Ca2+-dependent protease pathway involving calpain and HER2 stimulated Brk expression via inhibiting calpain activity. Calpastatin is a calpain endogenous inhibitor and the calpain-calpastatin system has been implicated in a number of cell physiological functions. HER2 restrained calpain activation via up-regulating calpastatin expression and HER2 downstream signaling, MAPK pathway, was involved in the regulation. Furthermore, silencing of Brk expression by RNA interference in HER2-overexpressing breast cancer cells decreased HER2-mediated cell proliferation, survival, invasion/metastasis potential and increased cell sensitivity to HER2 kinase inhibitor, lapatinib, treatment, indicating that Brk plays important roles in regulating and mediating the oncogenic functions of HER2. The Stat3 pathway played important roles in Brk mediated cell survival and invasion/metastasis in the context of HER2-overexpressing breast cancer cells. However, transgenic mice with inducible expression of constitutively active Brk (CA) in the mammary epithelium failed to develop malignant change in the mammary glands after Brk induction for 15 months which indicated that expression of Brk protein alone was not sufficiently to induce spontaneous breast tumor. Bitransgenic mice with co-expression of HER2/neu and inducible expression of Brk in the mammary epithelium developed multifocal mammary tumors, but there were no significant difference in the tumor occurring time, tumor size, tumor weight and tumor multiplicity between the mouse group with co-expression of Brk and HER2/neu and the mouse group with HER2/neu expression only.
Resumo:
Triple-negative breast cancers (TNBC) are characterized by the lack of or reduced expression of the estrogen and progesterone receptors, and normal expression of the human epidermal growth factor receptor 2. The lack of a well-characterized target for treatment leaves only systemic chemotherapy as the mainstay of treatment. Approximately 60-70% of patients are chemosensitive, while the remaining majority does not respond. Targeted therapies that take advantage of the unique molecular perturbations found in triple-negative breast cancer are needed. The genes that are frequently amplified or overexpressed represent potential therapeutic targets for triple-negative breast cancer. The purpose of this study was to identify and validate novel therapeutic targets for triple-negative breast cancers. 681 genes showed consistent and highly significant overexpression in TNBC compared to receptor-positive cancers in 2 data sets. For two genes, 3 of the 4 siRNAs showed preferential growth inhibition in TNBC cells. These two genes were the low density lipoprotein receptor-related protein 8 (LRP8) and very low-density lipoprotein receptor (VLDLR). Exposure to their cognate ligands, reelin and apolipoprotein E isoform 4 (ApoE4), stimulated the growth of TNBC cells in vitro. Suppression of the expression of either LRP8 or VLDLR or exposure to RAP (an inhibitor of ligand binding to LRP8 and VLDLR) abolished this ligand-induced proliferation. High-throughput protein and metabolic arrays revealed that ApoE4 stimulation rescued TNBC cells from serum-starvation induced up-regulation of genes involved in lipid biosynthesis, increased protein expression of oncogenes involved in the MAPK/ERK and DNA repair pathways, and reduced the serum-starvation induction of biochemicals involved in oxidative stress response and glycolytic metabolism. shLRP8 MDA-MB-231 xenografts had reduced tumor volume, in comparison to parental and shCON xenografts. These results indicate that LRP8-APOE signaling confers survival advantages to TNBC tumors under reduced nutrient conditions and during cellular environmental stress. We revealed that the LRP8-APOE receptor-ligand system is overexpressed in human TNBC. We also demonstrated that this receptor system mediates a strong growth promoting and survival function in TNBC cells in vitro and helps to sustain the growth of MDA-MD-231 xenografts. We propose that inhibitors of LRP8-APOE signaling may be clinically useful therapeutic agents for triple-negative breast cancer.
Resumo:
Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.
Resumo:
Vascular endothelial growth factor (VEGF) is a secreted endothelial cell mitogen that has been shown to induce vasculogenesis and angiogenesis in many organ systems and tumors. Considering the importance of VEGF to embryonic vascularization and survival, the effects of administered VEGF on developing or adult cerebrovasculature are unknown: can VEGF alter brain angiogenesis or mature cerebrovascular patterns? To examine these questions we exposed fetal, newborn, and adult rat cortical slice explants to graduated doses of recombinant VEGF. The effects of another known angiogenic factor, basic fibroblast growth factor (bFGF), were evaluated in a comparable manner. In addition, we infused VEGF via minipump into the adult cortex. Significant angiogenic effects were found in all VEGF experiments in a dose-responsive manner that were abolished by the addition of VEGF neutralizing antibody. Fetal and newborn explants had a highly complex network of branched vessels that immunoexpressed the flt-1 VEGF receptor, and flk-1 VEGF receptor expression was determined by reverse transcription–PCR. Adult explants had enlarged, dilated vessels that appeared to be an expansion of the existing network. All bFGF-treated explants had substantially fewer vascular profiles. VEGF infusions produced both a remarkable localized neovascularization and, unexpectedly, the expression of flt-1 on reactive astrocytes but not on endothelial cells. The preponderance of neovascularization in vitro and in vivo, however, lacked the blood–brain barrier (BBB) phenotype marker, GLUT-1, suggesting that in brain the angiogenic role of VEGF may differ from a potential BBB functional role, i.e., transport and permeability. VEGF may serve an important capacity in neovascularization or BBB alterations after brain injury.
Resumo:
Acting through a number of distinct pathways, many G protein-coupled receptors (GPCRs) activate the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade. Recently, it has been shown that in some cases, clathrin-mediated endocytosis is required for GPCR activation of the ERK/MAPK cascade, whereas in others it is not. Accordingly, we compared ERK activation mediated by a GPCR that does not undergo agonist-stimulated endocytosis, the α2A adrenergic receptor (α2A AR), with ERK activation mediated by the β2 adrenergic receptor (β2 AR), which is endocytosed. Surprisingly, we found that in COS-7 cells, ERK activation by the α2A AR, like that mediated by both the β2 AR and the epidermal growth factor receptor (EGFR), is sensitive to mechanistically distinct inhibitors of clathrin-mediated endocytosis, including monodansylcadaverine, a mutant dynamin I, and a mutant β-arrestin 1. Moreover, we determined that, as has been shown for many other GPCRs, both α2A and β2 AR-mediated ERK activation involves transactivation of the EGFR. Using confocal immunofluorescence microscopy, we found that stimulation of the β2 AR, the α2A AR, or the EGFR each results in internalization of a green fluorescent protein-tagged EGFR. Although β2 AR stimulation leads to redistribution of both the β2 AR and EGFR, activation of the α2A AR leads to redistribution of the EGFR but the α2A AR remains on the plasma membrane. These findings separate GPCR endocytosis from the requirement for clathrin-mediated endocytosis in EGFR transactivation-mediated ERK activation and suggest that it is the receptor tyrosine kinase or another downstream effector that must engage the endocytic machinery.
Resumo:
Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins associate with and transduce signals from TNF receptor 2, CD40, and presumably other members of the TNF receptor superfamily. TRAF2 is required for CD40- and TNF-mediated activation of the transcription factor NF-kappa B. Here we describe the isolation and characterization of a novel TRAF-interacting protein, I-TRAF, that binds to the conserved TRAF-C domain of the three known TRAFs. Overexpression of I-TRAF inhibits TRAF2-mediated NF-kappa B activation signaled by CD40 and both TNF receptors. Thus, I-TRAF appears as a natural regulator of TRAF function that may act by maintaining TRAFs in a latent state.
Resumo:
A number of factors both stimulating and inhibiting angiogenesis have been described. In the current work, we demonstrate that the angiogenic factor vascular endothelial growth factor (VEGF) activates mitogen-activated protein kinase (MAPK) as has been previously shown for basic fibroblast growth factor. The antiagiogenic factor 16-kDa N-terminal fragment of human prolactin inhibits activation of MAPK distal to autophosphorylation of the putative VEGF receptor, Flk-1, and phospholipase C-gamma. These data show that activation and inhibition of MAPK may play a central role in the control of angiogenesis.
Resumo:
Receptores purinérgicos e canais de cálcio voltagem-dependentes estão envolvidos em diversos processos biológicos como na gastrulação, durante o desenvolvimento embrionário, e na diferenciação neural. Quando ativados, canais de cálcio voltagem-dependentes e receptores purinérgicos do tipo P2, ativados por nucleotídeos, desencadeiam transientes de cálcio intracelulares controlando diversos processos biológicos. Neste trabalho, nós estudamos a participação de canais de cálcio voltagem-dependentes e receptores do tipo P2 na geração de transientes de cálcio espontâneos e sua regulação na expressão de fatores de transcrição relacionados com a neurogênese utilizando como modelo células tronco (CTE) induzidas à diferenciação em células tronco neurais (NSC) com ácido retinóico. Descrevemos que CTE indiferenciadas podem ter a proliferação acelerada pela ativação de receptores P2X7, enquanto que a expressão e a atividade desse receptor precisam ser inibidas para o progresso da diferenciação em neuroblasto. Além disso, ao longo da diferenciação neural, por análise em tempo real dos níveis de cálcio intracelular livre identificamos 3 padrões de oscilações espontâneas de cálcio (onda, pico e unique), e mostramos que ondas e picos tiveram a frequência e amplitude aumentadas conforme o andamento da diferenciação. Células tratadas com o inibidor do receptor de inositol 1,4,5-trifosfato (IP3R), Xestospongin C, apresentaram picos mas não ondas, indicando que ondas dependem exclusivamente de cálcio oriundo do retículo endoplasmático pela ativação de IP3R. NSC de telencéfalo de embrião de camundongos transgênicos ou pré-diferenciadas de CTE tratadas com Bz-ATP, o agonista do receptor P2X7, e com 2SUTP, agonista de P2Y2 e P2Y4, aumentaram a frequência e a amplitude das oscilações espontâneas de cálcio do tipo pico. Dados, obtidos por microscopia de luminescência, da expressão em tempo real de gene repórter luciferase fusionado à Mash1 e Ngn2 revelou que a ativação dos receptores P2Y2/P2Y4 aumentou a expressão estável de Mash1 enquanto que ativação do receptor P2X7 levou ao aumento de Ngn2. Além disso, células na presença do quelante de cálcio extracelular (EGTA) ou do depletor dos estoques intracelulares de cálcio do retículo endoplasmático (thapsigargin) apresentaram redução na expressão de Mash1 e Ngn2, indicando que ambos são regulados pela sinalização de cálcio. A investigação dos canais de cálcio voltagem-dependentes demonstrou que o influxo de cálcio gerado por despolarização da membrana de NSC diferenciadas de CTE é decorrente da ativação de canais de cálcio voltagem-dependentes do tipo L. Além disso, esse influxo pode controlar o destino celular por estabilizar expressão de Mash1 e induzir a diferenciação neuronal por fosforilação e translocação do fator de transcrição CREB. Esses dados sugerem que os receptores P2X7, P2Y2, P2Y4 e canais de cálcio voltagem-dependentes do tipo L podem modular as oscilações espontâneas de cálcio durante a diferenciação neural e consequentemente alteram o padrão de expressão de Mash1 e Ngn2 favorecendo a decisão do destino celular neuronal.
Resumo:
The circulating blood exerts a force on the vascular endothelium, termed fluid shear stress (FSS), which directly impacts numerous vascular endothelial cell (VEC) functions. For example, high rates of linear and undisturbed (i.e. laminar) blood flow maintains a protective and quiescent VEC phenotype. Meanwhile, deviations in blood flow, which can occur at vascular branchpoints and large curvatures, create areas of low, and/or oscillatory FSS, and promote a pro-inflammatory, pro-thrombotic and hyperpermeable phenotype. Indeed, it is known that these areas are prone to the development of atherosclerotic lesions. Herein, we show that cyclic nucleotide phosphodiesterase (PDE) 4D (PDE4D) activity is increased by FSS in human arterial endothelial cells (HAECs) and that this activation regulates the activity of cAMP-effector protein, Exchange Protein-activated by cAMP-1 (EPAC1), in these cells. Importantly, we also show that these events directly and critically impact HAEC responses to FSS, especially when FSS levels are low. Both morphological events induced by FSS, as measured by changes in cell alignment and elongation in the direction of FSS, and the expression of critical FSS-regulated genes, including Krüppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS) and thrombomodlin (TM), are mediated by EPAC1/PDE4D signaling. At a mechanistic level, we show that EPAC1/PDE4D acts through the vascular endothelial-cadherin (VECAD)/ platelet-cell adhesion molecule-1 (PECAM1)/vascular endothelial growth factor receptor 2 (VEGFR2) mechanosensor to activate downstream signaling though Akt. Given the critical role of PDE4D in mediating these effects, we also investigated the impact of various patterns of FSS on the expression of individual PDE genes in HAECs. Notably, PDE2A was significantly upregulated in response to high, laminar FSS, while PDE3A was upregulated under low, oscillatory FSS conditions only. These data may provide novel therapeutic targets to limit FSS-dependent endothelial cell dysfunction (ECD) and atherosclerotic development.
Resumo:
Le cannabis produit de nombreux effets psychologiques et physiologiques sur le corps humain. Les molécules contenues dans cette plante, désignées comme « phytocannabinoïdes », activent un système endogène qu’on appelle le système endocannabinoïde (eCB). Les effets de la consommation de cannabis sur la vision ont déjà été décrits sans cependant de formulation sur les mécanismes sous-jacents. Ces résultats comportementaux suggèrent, malgré tout, la présence de ce système eCB dans le système visuel, et particulièrement dans la rétine. Cette thèse vise donc à caractériser l’expression, la localisation et le rôle du système eCB dans la rétine du singe vervet, une espèce animale ayant un système visuel semblable à celui de l’humain. Nous avons mis au point un protocole expérimental d’immunohistochimie décrit dans l’article apparaissant dans l’Annexe I que nous avons utilisé pour répondre à notre objectif principal. Dans une première série de quatre articles, nous avons ainsi caractérisé l’expression et la localisation de deux récepteurs eCBs reconnus, les récepteurs cannabinoïdes de type 1 (CB1R) et de type 2 (CB2R), et d’un 3e présumé récepteur aux cannabinoïdes, le récepteur GPR55. Dans l’article 1, nous avons démontré que CB1R et une enzyme clé de ce système, la fatty acid amide hydrolase (FAAH), sont exprimés dans les parties centrale et périphérique de la rétine, et abondamment présents dans la fovéa, une région où l’acuité visuelle est maximale. Dans l’article 2, nous avons localisé le CB2R dans des cellules gliales de la rétine : les cellules de Müller et nous avons proposé un modèle sur l’action de cette protéine dans la fonction rétinienne faisant appel à une cascade chimique impliquant les canaux potassiques. Dans l’article 3, nous avons observé le GPR55 exclusivement dans les bâtonnets qui sont responsables de la vision scotopique et nous avons soumis un deuxième modèle de fonctionnement de ce récepteur par le biais d'une modulation des canaux calciques et sodiques des bâtonnets. Vu que ces 3 récepteurs se retrouvent dans des cellules distinctes, nous avons suggéré leur rôle primordial dans l’analyse de l’information visuelle au niveau rétinien. Dans l’article 4, nous avons effectué une analyse comparative de l’expression du système eCB dans la rétine de souris, de toupayes (petits mammifères insectivores qui sont sont considérés comme l’étape intermédiaire entre les rongeurs et les primates) et de deux espèces de singe (le vervet et le rhésus). Ces résultats nous ont menés à présenter une hypothèse évolutionniste quant à l’apparition et à la fonction précise de ces récepteurs. Dans les articles subséquents, nous avons confirmé notre hypothèse sur le rôle spécifique de ces trois récepteurs par l’utilisation de l’électrorétinographie (ERG) après injection intravitréenne d’agonistes et d’antagonistes de ces récepteurs. Nous avons conclu sur leur influence indéniable dans le processus visuel rétinien chez le primate. Dans l’article 5, nous avons établi le protocole d’enregistrement ERG normalisé sur le singe vervet, et nous avons produit un atlas d’ondes ERG spécifique à cette espèce, selon les règles de l’International Society for Clinical Electrophysiology of Vision (ISCEV). Les patrons électrorétinographiques se sont avérés semblables à ceux de l’humain et ont confirmé la similarité entre ces deux espèces. Dans l’article 6, nous avons démontré que le blocage de CB1R ou CB2R entraine une modification de l’électrorétinogramme, tant au niveau photopique que scotopique, ce qui supporte l’implication de ces récepteurs dans la modulation des ondes de l’ERG. Finalement, dans l’article 7, nous avons confirmé le modèle neurochimique proposé dans l’article 3 pour expliquer le rôle fonctionnel de GPR55, en montrant que l’activation ou le blocage de ce récepteur, respectivement par un agoniste (lysophosphatidylglucoside, LPG) ou un antagoniste (CID16020046), entraine soit une augmentation ou une baisse significative de l’ERG scotopique seulement. Ces données, prises ensemble, démontrent que les récepteurs CB1R, CB2R et GPR55 sont exprimés dans des types cellulaires bien distincts de la rétine du singe et ont chacun un rôle spécifique. L’importance de notre travail se manifeste aussi par des applications cliniques en permettant le développement de cibles pharmacologiques potentielles dans le traitement des maladies de la rétine.
Resumo:
Vascular endothelial growth factor (VEGF) is one of the major mediators of retinal ischemia-associated neovascularization. We have shown here that adeno-associated virus (AAV)-mediated expression of sFIt-1, a soluble form of the Flt-1 VEGF receptor, was maintained for up to 8 and 17 months postinjection in mice and in monkeys, respectively. The expression of sFIt-1 was associated with the long-term (8 months) regression of neovascular vessels in 85% of trVEGF029 eyes. In addition, it resulted in the maintenance of retinal morphology, as the majority of the treated trVEGF029 eyes (75%) retained high numbers of photoreceptors, and in retinal function as measured by electroretinography. AAV-mediated expression of sFIt-1 prevented the development of laser photocoagulation-incluced choroidal neovascularization in all treated monkey eyes. There were no clinically or histologically detectable signs of toxicity present in either animal model following AAV.sFlt injection. These results suggest that AAV-mediated secretion gene therapy could be considered for treatment of retinal and choroidal neovascularizations.
Resumo:
The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research.
Resumo:
Long-term alcohol abuse by human subjects leads to selective brain damage that is restricted in extent and variable in severity. Within the cerebral cortex, neuronal loss is most marked in the superior frontal cortex and relatively mild in motor cortex. Cirrhotic alcoholics and subjects with alcohol-related Wernicke-Korsakoff syndrome show more severe and more extensive damage than do uncomplicated cases. Accumulating evidence suggests that the likelihood of developing alcohol dependency is associated with one or more genetic markers. In previous work we showed that GABAA receptor functionality, and the subunit isoform expression that underlies this, differed in region- and disease-specific ways between alcoholics and controls. By contrast, glutamate receptor (NMDA, KA, AMPA) differences were muted or absent. Here we asked if genotype differentiated the form, pharmacology, or expression of glutamate and GABA receptors in pathologically vulnerable and spared cortical regions, with a view to determining whether such subject factors might influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy under informed, written consent from uncomplicated and alcoholic-cirrhotic Caucasian (predominantly Anglo-Celtic) cases, together with matched controls and cases with cirrhosis of non-alcoholic origin. All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were processed for synaptic membrane receptor binding, mRNA analysis by quantitative RT-PCR, and protein analysis by Western blot. Genotyping was performed by PCR methods, in the main using published primers. Several genetic markers differentiated between our alcoholic and control subjects, including the GABAA receptor 2 subunit (GABB2) gene ( 2 (3) 10.329, P 0.01), the dopamine D2 receptor B1 (DRD2B) allele ( 2 (3) 10.109, P 0.01) and a subset of the alcohol dehydrogenase-3 (ADH3) alleles ( 2 (2) 4.730, P 0.05). Although neither the type-2 glutamate transporter (EAAT2) nor the serotonin transporter (5HTT) genes were significantly associated with alcoholism, only EAAT2 heterozygotes showed a significant association between ADH3 genotype and alcoholism ( 2 (3) 7.475, P 0.05). Other interactions between genotypes were also observed. DRD2A, DRD2B, GABB2, EAAT2 and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters, although in combined subjects there was a significant DRD2B X Area Interaction with glutamateNMDA receptor efficacy (F(1,57) 4.67; P 0.05), measured as the extent of glutamate-enhanced MK801 binding. In contrast, there was a significant Case-group X ADH3 X Area Interaction with glutamateNMDA receptor efficacy (F(3,57) 2.97; P 0.05). When GABAA receptor subunit isoform expression was examined, significant Case-group X Genotype X Area X Isoform interactions were found for EAAT2 with subunit mRNA (F(1,37) 4.22; P0.05), for GABB2 with isoform protein (F(1,37) 5.69; P 0.05), and for DRD2B with isoform protein (F(2,34)5.69; P0.05). The results suggest that subjects’ genetic makeup may modulate the effectiveness of amino acid-mediated transmission in different cortical regions, and thereby influence neuronal vulnerability to excitotoxicity.