849 resultados para Urban-rural Differences
Resumo:
This paper discusses the outcomes of a research project on nutrients build-up on urban road surfaces. Nutrient build-up was investigated on road sites belonging to residential, industrial and commercial land use. Collected build-up samples were separated into five particle size ranges and were tested for total nitrogen (TN), total phosphorus (TP) and sub species of nutrients, namely, NO2-, NO3-, TKN and PO43-. Multivariate analytical techniques were used to analyse the data and to develop detailed understanding on build-up. Data analysis revealed that the solids loads on urban road surfaces are highly influenced by factors such as land use, antecedent dry period and traffic volume. However, the nutrient build-up process was found to be independent of the type of land use. It was solely dependent on the particle size of solids build-up. Most of the nutrients were associated with the particle size range <150 μm. Therefore, the removal of particles below 150 µm from road surfaces is of importance for the removal of nitrogen and phosphorus from road surface solids build-up. It is also important to consider the differences in the composition of nitrogen and phosphorus build-up in the context of designing effective stormwater quality mitigation strategies.
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.
Resumo:
Safety interventions (e.g., median barriers, photo enforcement) and road features (e.g., median type and width) can influence crash severity, crash frequency, or both. Both dimensions—crash frequency and crash severity—are needed to obtain a full accounting of road safety. Extensive literature and common sense both dictate that crashes are not created equal, with fatalities costing society more than 1,000 times the cost of property damage crashes on average. Despite this glaring disparity, the profession has not unanimously embraced or successfully defended a nonarbitrary severity weighting approach for analyzing safety data and conducting safety analyses. It is argued here that the two dimensions (frequency and severity) are made available by intelligently and reliably weighting crash frequencies and converting all crashes to property-damage-only crash equivalents (PDOEs) by using comprehensive societal unit crash costs. This approach is analogous to calculating axle load equivalents in the prediction of pavement damage: for instance, a 40,000-lb truck causes 4,025 times more stress than does a 4,000-lb car and so simply counting axles is not sufficient. Calculating PDOEs using unit crash costs is the most defensible and nonarbitrary weighting scheme, allows for the simple incorporation of severity and frequency, and leads to crash models that are sensitive to factors that affect crash severity. Moreover, using PDOEs diminishes the errors introduced by underreporting of less severe crashes—an added benefit of the PDOE analysis approach. The method is illustrated with rural road segment data from South Korea (which in practice would develop PDOEs with Korean crash cost data).
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models. The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler's out-of-home activity-tour time-use patterns.
Resumo:
In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.
Resumo:
Understanding the expected safety performance of rural signalized intersections is critical for (a) identifying high-risk sites where the observed safety performance is substantially worse than the expected safety performance, (b) understanding influential factors associated with crashes, and (c) predicting the future performance of sites and helping plan safety-enhancing activities. These three critical activities are routinely conducted for safety management and planning purposes in jurisdictions throughout the United States and around the world. This paper aims to develop baseline expected safety performance functions of rural signalized intersections in South Korea, which to date have not yet been established or reported in the literature. Data are examined from numerous locations within South Korea for both three-legged and four-legged configurations. The safety effects of a host of operational and geometric variables on the safety performance of these sites are also examined. In addition, supplementary tables and graphs are developed for comparing the baseline safety performance of sites with various geometric and operational features. These graphs identify how various factors are associated with safety. The expected safety prediction tables offer advantages over regression prediction equations by allowing the safety manager to isolate specific features of the intersections and examine their impact on expected safety. The examination of the expected safety performance tables through illustrated examples highlights the need to correct for regression-to-the-mean effects, emphasizes the negative impacts of multicollinearity, shows why multivariate models do not translate well to accident modification factors, and illuminates the need to examine road safety carefully and methodically. Caveats are provided on the use of the safety performance prediction graphs developed in this paper.
Resumo:
A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.
Resumo:
Rural-urban migration continues to grow in many developing countries including Vietnam. The experience of stress and coping associated with this process may vary for people from different circumstances. However, there has been little research on migrants to date. This study adopts a qualitative approach to research on unregistered, male, migrant freelance labourers in urban Vietnam and to explore factors contributing to stress and coping among this population. The study revealed an array of stressors related to migrants' life experiences in urban space, including physical, financial and social factors. Coping was diverse, including problem-focused coping (PFC) and emotion-focused coping (EFC), pro-social and anti-social, active and passive. Less active and anti-social coping appeared common. Together, weak social network and lack of support from formal systems placed coping and adaptation in a cyclic relationship. The results highlight a multi-disciplinary approach to help cope and adapt effectively for these men.
Resumo:
This paper develops a composite participation index (PI) to identify patterns of transport disadvantage in space and time. It is operationalised using 157 weekly activity-travel diaries data collected from three case study areas in rural Northern Ireland. A review of activity space and travel behaviour research found that six dimensional indicators of activity spaces were typically used including the number of unique locations visited, distance travelled, area of activity spaces, frequency of activity participation, types of activity participated in, and duration of participation in order to identify transport disadvantage. A combined measure using six individual indices were developed based on the six dimensional indicators of activity spaces, by taking into account the relativity of the measures for weekdays, weekends, and for a week. Factor analyses were conducted to derive weights of these indices to form the PI measure. Multivariate analysis using general linear models of the different indicators/indices identified new patterns of transport disadvantage. The research found that: indicator based measures and index based measures are complement each other; interactions between different factors generated new patterns of transport disadvantage; and that these patterns vary in space and time. The analysis also indicates that the transport needs of different disadvantaged groups are varied.
Resumo:
Traditionally, transport disadvantage has been identified using accessibility analysis although the effectiveness of the accessibility planning approach to improving access to goods and services is not known. This paper undertakes a comparative assessment of measures of mobility, accessibility, and participation used to identify transport disadvantage using the concept of activity spaces. A 7 day activity-travel diary data for 89 individuals was collected from two case study areas located in rural Northern Ireland. A spatial analysis was conducted to select the case study areas using criteria derived from the literature. The criteria are related to the levels of area accessibility and area mobility which are known to influence the nature of transport disadvantage. Using the activity-travel diary data individuals weekly as well as day to day variations in activity-travel patterns were visualised. A model was developed using the ArcGIS ModelBuilder tool and was run to derive scores related to individual levels of mobility, accessibility, and participation in activities from the geovisualisation. Using these scores a multiple regression analysis was conducted to identify patterns of transport disadvantage. This study found a positive association between mobility and accessibility, between mobility and participation, and between accessibility and participation in activities. However, area accessibility and area mobility were found to have little impact on individual mobility, accessibility, and participation in activities. Income vis-àvis ´ car-ownership was found to have a significant impact on individual levels of mobility, and accessibility; whereas participation in activities were found to be a function of individual levels of income and their occupational status.
Resumo:
The reduction of CO2 emissions and social exclusion are two key elements of UK transport strategy. Despite intensive research on each theme, little effort has so far been made linking the relationship between emissions and social exclusion. In addition, current knowledge on each theme is limited to urban areas; little research is available on these themes for rural areas. This research contributes to this gap in the literature by analysing 157 weekly activity-travel diary data collected from three case study areas with differential levels of area accessibility and area mobility options, located in rural Northern Ireland. Individual weekly CO2 emission levels from personal travel diaries (both hot exhaust emission and cold-start emission) were calculated using average speed models for different modes of transport. The socio-spatial patterns associated with CO2 emissions were identified using a general linear model whereas binary logistic regression analyses were conducted to identify mode choice behaviour and activity patterns. This research found groups that emitted a significantly lower level of CO2 included individuals living in an area with a higher level of accessibility and mobility, non-car, non-working, and low-income older people. However, evidence in this research also shows that although certain groups (e.g. those working, and residing in an area with a lower level of accessibility) emitted higher levels of CO2, their rate of participation in activities was however found to be significantly lower compared to their counterparts. Based on the study findings, this research highlights the need for both soft (e.g. teleworking) and physical (e.g. accessibility planning) policy measures in rural areas in order to meet government’s stated CO2 reduction targets while at the same time enhancing social inclusion.
Resumo:
Background: Strategies for cancer reduction and management are targeted at both individual and area levels. Area-level strategies require careful understanding of geographic differences in cancer incidence, in particular the association with factors such as socioeconomic status, ethnicity and accessibility. This study aimed to identify the complex interplay of area-level factors associated with high area-specific incidence of Australian priority cancers using a classification and regression tree (CART) approach. Methods: Area-specific smoothed standardised incidence ratios were estimated for priority-area cancers across 478 statistical local areas in Queensland, Australia (1998-2007, n=186,075). For those cancers with significant spatial variation, CART models were used to identify whether area-level accessibility, socioeconomic status and ethnicity were associated with high area-specific incidence. Results: The accessibility of a person’s residence had the most consistent association with the risk of cancer diagnosis across the specific cancers. Many cancers were likely to have high incidence in more urban areas, although male lung cancer and cervical cancer tended to have high incidence in more remote areas. The impact of socioeconomic status and ethnicity on these associations differed by type of cancer. Conclusions: These results highlight the complex interactions between accessibility, socioeconomic status and ethnicity in determining cancer incidence risk.
Resumo:
An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.
Resumo:
The food and fuel crisis experienced in 2006 to 2008 has highlighted the importance of agricultural commodity production throughout developing and developed economies and has placed greater awareness and importance on rural property and rural property markets. These factors have led to an increased interest from major property investment institutions and property companies in the role of rural property in a mixed asset or mixed property investment portfolio. This paper will analyse rural property sales in New South Wales for the period 1990-2008, and will compare total return performance across a number of rural property sectors based on geographic location and land use type. These results show that the inclusion of rural property in an investment portfolio has benefits in relation to return and risk.