958 resultados para Urban Regeneration
Resumo:
Urban water quality can be significantly impaired by the build-up of pollutants such as heavy metals and volatile organics on urban road surfaces due to vehicular traffic. Any control strategy for the mitigation of traffic related build-up of heavy metals and volatile organic pollutants should be based on the knowledge of their build-up processes. In the study discussed in this paper, the outcomes of a detailed experiment investigation into build-up processes of heavy metals and volatile organics are presented. It was found that traffic parameters such as average daily traffic, volume over capacity ratio and surface texture depth had similar strong correlations with the build-up of heavy metals and volatile organics. Multicriteria decision analyses revealed that the 1 - 74 um particulate fraction of total suspended solids (TSS) could be regarded as a surrogate indicator for particulate heavy metals in build-up and this same fraction of total organic carbon could be regarded as a surrogate indicator for particulate volatile organics build-up. In terms of pollutants affinity, TSS was found to be the predominant parameter for particulate heavy metals build-up and total dissolved solids was found to be the predominant parameter for he potential dissolved particulate fraction in heavy metals build-up. It was also found that land use did not play a significant role in the build-up of traffic generated heavy metals and volatile organics.
Resumo:
A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.
Resumo:
This paper introduces Sapporo World Window (hereafter SWW), an interactive social media mash-up deployed in a newly built urban public underground space utilising ten public displays and urban dwellers’ mobile phones. SWW enables users to share their favourite locations with fellow citizens and visitors through integrating various social media contents to a coherent whole. The system aims to engage citizens in socio-cultural and technological interactions, turning the underground space into a creative and lively social space. We present first insight from an initial user study in a real world setting.
Resumo:
Noir and the Urban Imaginary is creative practice based PhD research comprising critical analysis (40%) exegesis (10%) and a twenty-six minute film, The Brisbane Line (50%). The research investigates intersection of four elements; the city, the cinema, history and postmodernity. The thesis discusses relationships between each of the four elements and what cinematic representation of cities reveals about modern and postmodern urban experience and historicisation. Key concepts in the research include, 'urbanism', 'historiography', 'modernity', 'postmodernity', 'neo-noir'.
Resumo:
This paper presents an explanation of why the reuse of building components after demolition or deconstruction is critical to the future of the construction industry. An examination of the historical cause and response to climate change sets the scene as to why governance is becoming increasingly focused on the built environment as a mechanism to controlling waste generation associated with the process of demolition, construction and operation. Through an annotated description to the evolving design and construction methodology of a range of timber dwellings (typically 'Queenslanders' during the eras of 1880-1900, 1900-1920 & 1920-1940) the paper offers an evaluation to the variety of materials, which can be used advantageously by those wishing to 'regenerate' a Queenslander. This analysis of 'regeneration' details the constraints when considering relocation and/ or reuse by adaption including deconstruction of building components against the legislative framework requirements of the Queensland Building Act 1975 and the Queensland Sustainable Planning Act 2009, with a specific examination to those of the Building Codes of Australia. The paper concludes with a discussion of these constraints, their impacts on 'regeneration' and the need for further research to seek greater understanding of the practicalities and drivers of relocation, adaptive and building components suitability for reuse after deconstruction.
Resumo:
The use of mesoporous bioactive glasses (MBG) for drug delivery and bone tissue regeneration has grown significantly over the past 5 years. In this review, we highlight the recent advances made in the preparation of MBG particles, spheres, fibers and scaffolds. The advantages of MBG for drug delivery and bone scaffold applications are related to this material’s well-ordered mesopore channel structure, superior bioactivity, and the application for the delivery of both hydrophilic and hydrophobic drugs. A brief forward-looking perspective on the potential clinical applications of MBG in regenerative medicine is also discussed.
Resumo:
The increasing ubiquity of digital technology, internet services and location-aware applications in our everyday lives allows for a seamless transitioning between the visible and the invisible infrastructure of cities: road systems, building complexes, information and communication technology, and people networks create a buzzing environment that is alive and exciting. Driven by curiosity, initiative and interdisciplinary exchange, the Urban Informatics Research Lab at Queensland University of Technology (QUT), Brisbane, Australia, is an emerging cluster of people interested in research and development at the intersection of people, place and technology with a focus on cities, locative media and mobile technology. This paper introduces urban informatics as a transdisciplinary practice across people, place and technology that can aid local governments, urban designers and planners in creating responsive and inclusive urban spaces and nurturing healthy cities. Three challenges are being discussed. First, people, and the challenge of creativity explores the opportunities and challenges of urban informatics that can lead to the design and development of new tools, methods and applications fostering participation, the democratisation of knowledge, and new creative practices. Second, technology, and the challenge of innovation examines how urban informatics can be applied to support user-led innovation with a view to promote entrepreneurial ideas and creative industries. Third, place, and the challenge of engagement discusses the potential to establish places within cities that are dedicated to place-based applications of urban informatics with a view to deliver community and civic engagement strategies.
Resumo:
Operation in urban environments creates unique challenges for research in autonomous ground vehicles. Due to the presence of tall trees and buildings in close proximity to traversable areas, GPS outage is likely to be frequent and physical hazards pose real threats to autonomous systems. In this paper, we describe a novel autonomous platform developed by the Sydney-Berkeley Driving Team for entry into the 2007 DARPA Urban Challenge competition. We report empirical results analyzing the performance of the vehicle while navigating a 560-meter test loop multiple times in an actual urban setting with severe GPS outage. We show that our system is robust against failure of global position estimates and can reliably traverse standard two-lane road networks using vision for localization. Finally, we discuss ongoing efforts in fusing vision data with other sensing modalities.