944 resultados para UV CETI STARS
Resumo:
Context. Rotational mixing in massive stars is a widely applied concept, with far-reaching consequences for stellar evolution, nucleosynthesis, and stellar explosions.
Resumo:
A printable, multicomponent, UV-sensitive indicator which provides different coloured, flag-like warnings of the approach to erythema is described.
Resumo:
We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDs) produced by the interaction of the ejecta Outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDs dust mass reaches a modest 3.0 x 10(-4) M-circle dot by day 230. While dust condensation within a CDs formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDs formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least similar to 8 x 10(-3) M-circle dot. This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.
Pulsating or not? A search for hidden pulsations below the red edge of the ZZ Ceti instability strip
Resumo:
The location of the red edge of the ZZ Ceti instability strip is defined observationally as being the lowest temperature for which a white dwarf with a H-rich atmosphere (DA) is known to exhibit periodic brightness variations. Whether this cut-off in flux variations is actually due to a cessation of pulsation or merely due to the attenuation of any variations by the convection zone, rendering them invisible, is not clear. The latter is a theoretical possibility because with decreasing effective temperature, the emergent flux variations become an ever smaller fraction of the amplitude of the flux variations in the interior. In contrast to the flux variations, the visibility of the velocity variations associated with the pulsations is not thought to be similarly affected. Thus, models imply that were it still pulsating, a white dwarf just below the observed red edge should show velocity variations. In order to test this possibility, we used time-resolved spectra of three DA white dwarfs that do not show photometric variability, but which have derived temperatures only slightly lower than the coolest ZZ Ceti variables. We find that none of our three targets show significant periodic velocity variations, and set 95% confidence limits on amplitudes of 3.0, 5.2, and 8.8 km s(-1). Thus, for two out of our three objects, we can rule out velocity variations as large as 5.4 km s(-1) observed for the strongest mode in the cool white dwarf pulsator ZZ Psc. In order to verify our procedures, we also examined similar data of a known ZZ Ceti, HL Tau 76. Applying external information from the light curve, we detect significant velocity variations for this object with amplitudes of up to 4 km s(-1). Our results suggest that substantial numbers of pulsators having large velocity amplitudes do not exist below the observed photometric red edge and that the latter probably reflects a real termination of pulsations.
Resumo:
An iron prophyrin complex has been immobilized on the surfaces of platinum, silver, and indium doped-tin oxide coated glass by using the poly(gamma-ethyl L-glutamate)-N-(3-aminopropyl)imidazole derivative 1 as a linking agent, thus allowing-the surface-enhanced resonance Raman and UV-VIS absorption spectra and electrochemical properties of the porphyrin to be studied in solvents in which it is not normally soluble.
Resumo:
We have studied over 1600 Am stars at a photometric precision of 1 mmag with SuperWASP photometric data. Contrary to previous belief, we find that around 200 Am stars are pulsating d Sct and ? Dor stars, with low amplitudes that have been missed in previous, less extensive studies. While the amplitudes are generally low, the presence of pulsation in Am stars places a strong constraint on atmospheric convection, and may require the pulsation to be laminar. While some pulsating Am stars have been previously found to be d Sct stars, the vast majority of Am stars known to pulsate are presented in this paper. They will form the basis of future statistical studies of pulsation in the presence of atomic diffusion. An extended version of Table 1 containing all the detected frequencies and amplitudes is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/535/A3
Resumo:
UVES interstellar observations from the Paranal Observatory Project are presented for early-type stars located in the line of sight to the nearby open clusters IC 2391 (Omni Vel) and NGC 6475 (M7), with spectroscopic resolution R similar to 80 000 and signal-to-noise ratios in the Ti II (3383 angstrom), Ca II K, CH+ (4232 angstrom), Na I D and K I (7698 angstrom) lines of several hundred. The sightlines are a mixture of cluster and non-cluster objects. A total of 22 early-type stars (A and B type) are present in our sample towards IC 2391, with 21 towards NGC 6475/M7, and enable us to probe for differences in column density on scales from similar to 0.07 to 7.3 and similar to 0.05 to 4.9 pc in the respective clusters. Additionally, towards Praesepe the Na I D interstellar variation only is probed towards 13 sightlines and transverse scales of similar to 0.16-10.7 pc at R = 70 000. Towards IC 2391 variations are found in Ti II, Ca II K and Na I D column density in different sightlines of up to 0.7, 1.0 and 1.8 dex (excluding one star), respectively. This kind of variability correlates well with the Hipparcos parallax of the objects, and probes structure within the Local Bubble. For cluster-only objects the variations are 0.3, 0.3 and 0.5 dex, respectively. For the field of view towards NGC6475 the corresponding maximum variations are somewhat smaller, being 0.5, 0.3, 0.8 and 1.0 dex for Ti II, Ca II K, Na I and K I, respectively, for all objects and 0.4, 0.2, 0.6 and 0.7 dex for the cluster-only objects. These are uncorrelated with parallax, and again demonstrate that Ca II K tends to be more smoothly distributed than Na I D. A few likely cluster sightlines show evidence for CH+ and variations in this molecular species of a factor of 10 in equivalent width over sub-pc scales. Towards Praesepe variation in interstellar Na I D is small, being a maximum of only similar to 0.4 dex (including measurement errors), but with fewer sightlines studied. Overall, the scatter in the data is similar for the singly ionized species Ti II and Ca II, lending more support to the hypothesis that these two species sample similar parts of the interstellar medium (ISM). This also appears to be the case for the neutral species Na I D and K I in the one cluster studied. Finally, multiple-epoch observations from a variety of archive sources are used to search for astronomical unit (au) scale structure in the ISM towards 46 sightlines. There are tentative indications of structure on scales of tens to thousands of au for three sightlines. Future observations will confirm the veracity or otherwise of the time-variable components and others presented.
Resumo:
Aims. We compare the predictions of evolutionary models for early-type stars with atmospheric parameters, projected rotational velocities and nitrogen abundances estimated for a sample of Be-type stars. Our targets are located in 4 fields centred on the Large Magellanic Cloud cluster: NGC 2004 and the N 11 region as well as the Small Magellanic Cloud clusters: NGC 330 and NGC 346.
Resumo:
A simple UV-activated, TiO2-based film or ink for removing thin oxide or sulfide layers from metal surfaces by reductive photocatalysis is described.
Resumo:
A UVB specific dosimeter is described comprising: a redox dye (2,6-dichloroindophenol, DCIP), a semiconductor ( tin(IV) oxide, SnO2) and a sacrificial electron donor ( glycerol) dispersed in a polymer ( hydroxy ethyl cellulose, HEC) film. The dosimeter is blue in the absence of UVB light but rapidly loses colour on exposure to UVB light. The spectral characteristics of a typical UVB dosimeter film and the mechanism by which the colour change occurs are detailed. DCIP UVB dosimeter films exhibit a response that is related to the irradiance level and duration of UVB exposure, the level of SnO2 present and to a lesser extent the level of glycerol present. The response of the dosimeter appears to be independent of dye concentration and film thickness. Furthermore, DCIP UVB dosimeter films respond to solar simulated light, exhibiting a colour loss that can be simply related to the Minimal Erythemal Dose (MED) exposure for skin type II. As a consequence, such indicators have potential for measuring solar radiation exposure and providing an early warning of erythema for most Caucasian skin (i.e. skin type II).
Resumo:
A novel UV dosimeter is described comprising a tetrazolium dye, neotetrazolium chloride (NTC), dissolved in a film of polymer, polyvinyl alcohol (PVA). The dosimeter is pale yellow/colourless in the absence of UV light, and turns red upon exposure to UV light. The spectral characteristics of a typical UV dosimeter film and the mechanism through which the colour change occurs are detailed. The NTC UV dosimeter films exhibit a response to UV light that is related to the intensity and duration of UV exposure, the level of dye present in the films and the thickness of the films themselves. The response of the dosimeter is temperature independent over the range 20-40 degrees C and, like most UV dosimeters, exhibits a cosine-like response dependence upon irradiance angle. The introduction of a layer of a UV-screening compound which slows the rate at which the dosimeter responds to UVR enables the dosimeter response to be tailored to different UV doses. The possible use of these novel dosimeters to measure solar UV exposure dose is discussed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
An oxygen indicator is described, comprising nanoparticles of titania dispersed in hydroxyethyl cellulose (HEC) polymer film containing a sacrificial electron donor, glycerol, and the redox indicator, indigo-tetrasulfonate (ITS). The indicator is blue-coloured in the absence of UV light, however upon exposure to UV light it not only loses its colour but also luminesces, unless and until it is exposed to oxygen, whereupon its original colour is restored. The initial photobleaching spectral ( absorbance and luminescence) response characteristics in air and in vacuum are described and discussed in terms of a simple reaction scheme involving UV activation of the titania photocatalyst particles, which are used to reduce the redox dye, ITS, to its leuco form, whilst simultaneously oxidising the glycerol to glyceraldehye. The response characteristics of the activated, that is, UV photobleached, form of the indicator to oxygen are also reported and the possible uses of such an indicator to measure ambient O-2 levels are discussed. Copyright (C) 2008 Andrew Mills et al.