934 resultados para Two-level Atom
Resumo:
It has been suggested that low-level laser therapy (LLLT) can modulate inflammatory processes. The aim of this experiment was to investigate what effects red laser irradiation with two different wavelengths (660 nm and 684 nm) on carrageenan-induced rat paw edema and histology. Thirty two male Wistar rats were randomly divided into four groups. One group received a sterile saline injection, while inflammation was induced by a sub-plantar injection of carrageenan (1 mg/paw) in the three other groups. After 1 h, LLLT was administered to the paw in two of the carrageenan-injected groups. Continuous wave 660 nm and 684 nm red lasers respectively with mean optical outputs of 30 mW and doses of 7.5 J/cm(2) were used. The 660 nm and 684 nm laser groups developed significantly (P < 0.01) less edema (0.58 ml [SE +/- 0.17] ml and 0.76 ml [SE +/- 0.10] respectively) than the control group (1.67 ml [SE +/- 0.191) at 4 h after injections. Similarly, both laser groups showed a significantly lower number of inflammatory cells in the muscular and conjunctive sub-plantar tissues than the control group.We conclude that both 660 nm and 684 nm red wavelengths of LLLT are effective in reducing edema formation and inflammatory cell migration when a dose of 7.5 J/cm(2) is used. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
O artigo objetiva propor um arcabouço teórico para analisar programas de desenvolvimento e suas ações em nível local. Em particular, o artigo destaca dois conceitos-chave que devem ser levados em consideração no processo de implementação de programas de desenvolvimento em nível local: conhecimento e cultura. O artigo mostra que o entendimento do conhecimento enquanto construção social contrasta com a perspectiva racional e positivista de que este é derivado exclusivamente da ciência. O artigo mostra que se desenvolvimento é relacionado para a melhoria das condições de vida das pessoas por via de mudanças econômicas e sociais, então, desenvolvimento é mediado e impacta sobre conhecimento e cultura.
Resumo:
A theoretical approach aiming at the prediction of segregation of dopant atoms on nanocrystalline systems is discussed here. It considers the free energy minimization argument in order to provide the most likely dopant distribution as a function of the total doping level. For this, it requires as input (i) a fixed polyhedral geometry with defined facets, and (ii) a set of functions that describe the surface energy as a function of dopant content for different crystallographic planes. Two Sb-doped SnO2 nanocrystalline systems with different morphology and dopant content were selected as a case study, and the calculation of the dopant distributions expected for them is presented in detail. The obtained results were compared to previously reported characterization of this system by a combination of HRTEM and surface energy calculations, and both methods are shown to be equivalent. Considering its application pre-requisites, the present theoretical approach can provide a first estimation of doping atom distribution for a wide range of nanocrystalline systems. We expect that its use will support the reduction of experimental effort for the characterization of doped nanocrystals, and also provide a solution to the characterization of systems where even state-of-art analytical techniques are limited.
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 °C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 °C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (Mp), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction.
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 degrees C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 degrees C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (M-p), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
With the introduction of the mid-level ethanol blend gasoline fuel for commercial sale, the compatibility of different off-road engines is needed. This report details the test study of using one mid-level ethanol fuel in a two stroke hand held gasoline engine used to power line trimmers. The study sponsored by E3 is to test the effectiveness of an aftermarket spark plug from E3 Spark Plug when using a mid-level ethanol blend gasoline. A 15% ethanol by volume (E15) is the test mid-level ethanol used and the 10% ethanol by volume (E10) was used as the baseline fuel. The testing comprises running the engine at different load points and throttle positions to evaluate the cylinder head temperature, exhaust temperature and engine speed. Raw gas emissions were also measured to determine the impact of the performance spark plug. The low calorific value of the E15 fuel decreased the speed of the engine along with reduction in the fuel consumption and exhaust gas temperature. The HC emissions for E15 fuel and E3 spark plug increased when compared to the base line in most of the cases and NO formation was dependent on the cylinder head temperature. The E3 spark plug had a tendency to increase the temperature of the cylinder head irrespective of fuel type while reducing engine speed.
Resumo:
The U.S. Renewable Fuel Standard mandates that by 2022, 36 billion gallons of renewable fuels must be produced on a yearly basis. Ethanol production is capped at 15 billion gallons, meaning 21 billion gallons must come from different alternative fuel sources. A viable alternative to reach the remainder of this mandate is iso-butanol. Unlike ethanol, iso-butanol does not phase separate when mixed with water, meaning it can be transported using traditional pipeline methods. Iso-butanol also has a lower oxygen content by mass, meaning it can displace more petroleum while maintaining the same oxygen concentration in the fuel blend. This research focused on studying the effects of low level alcohol fuels on marine engine emissions to assess the possibility of using iso-butanol as a replacement for ethanol. Three marine engines were used in this study, representing a wide range of what is currently in service in the United States. Two four-stroke engine and one two-stroke engine powered boats were tested in the tributaries of the Chesapeake Bay, near Annapolis, Maryland over the course of two rounds of weeklong testing in May and September. The engines were tested using a standard test cycle and emissions were sampled using constant volume sampling techniques. Specific emissions for two-stroke and four-stroke engines were compared to the baseline indolene tests. Because of the nature of the field testing, limited engine parameters were recorded. Therefore, the engine parameters analyzed aside from emissions were the operating relative air-to-fuel ratio and engine speed. Emissions trends from the baseline test to each alcohol fuel for the four-stroke engines were consistent, when analyzing a single round of testing. The same trends were not consistent when comparing separate rounds because of uncontrolled weather conditions and because the four-stroke engines operate without fuel control feedback during full load conditions. Emissions trends from the baseline test to each alcohol fuel for the two-stroke engine were consistent for all rounds of testing. This is due to the fact the engine operates open-loop, and does not provide fueling compensation when fuel composition changes. Changes in emissions with respect to the baseline for iso-butanol were consistent with changes for ethanol. It was determined iso-butanol would make a viable replacement for ethanol.
Resumo:
The isotopic abundance of 85Kr in the atmosphere, currently at the level of 10−11, has increased by orders of magnitude since the dawn of nuclear age. With a half-life of 10.76 years, 85Kr is of great interest as tracers for environmental samples such as air, groundwater and ice. Atom Trap Trace Analysis (ATTA) is an emerging method for the analysis of rare krypton isotopes at isotopic abundance levels as low as 10−14 using krypton gas samples of a few micro-liters. Both the reliability and reproducibility of the method are examined in the present study by an inter-comparison among different instruments. The 85Kr/Kr ratios of 12 samples, in the range of 10−13 to 10−10, are measured independently in three laboratories: a low-level counting laboratory in Bern, Switzerland, and two ATTA laboratories, one in Hefei, China, and another in Argonne, USA. The results are in agreement at the precision level of 5%.
Resumo:
Aims: The reported rate of stent thrombosis (ST) after drug-eluting stent (DES) implantation varies among registries. To investigate differences in baseline characteristics and clinical outcome in European and Japanese all-comers registries, we performed a pooled analysis of patient-level data. Methods and results: The j-Cypher registry (JC) is a multicentre observational study conducted in Japan, including 12,824 patients undergoing SES implantation. From the Bern-Rotterdam registry (BR) enrolled at two academic hospitals in Switzerland and the Netherlands, 3,823 patients with SES were included in the current analysis. Patients in BR were younger, more frequently smokers and presented more frequently with ST-elevation myocardial infarction (MI). Conversely, JC patients more frequently had diabetes and hypertension. At five years, the definite ST rate was significantly lower in JC than BR (JC 1.6% vs. BR 3.3%, p<0.001), while the unadjusted mortality tended to be lower in BR than in JC (BR 13.2% vs. JC 14.4%, log-rank p=0.052). After adjustment, the j-Cypher registry was associated with a significantly lower risk of all-cause mortality (HR 0.56, 95% CI: 0.49-0.64) as well as definite stent thrombosis (HR 0.46, 95% CI: 0.35-0.61). Conclusions: The baseline characteristics of the two large registries were different. After statistical adjustment, JC was associated with lower mortality and ST.
Resumo:
Cytochromes P450 catalyze a monooxygenase reaction in which molecular oxygen is split and one oxygen atom is incorporated into the substrate. As a whole, P450 researchers have focused most of their attention on substrate metabolism and relatively little on how these enzymes are regulated. This study will focus on the regulation of two P450 isoforms known as, CYP2D6 and CYP4F11. ^ The human CYP2D gene locus contains two pseudogenes and one functional gene known as CYP2D6. This locus is highly polymorphic and produces several alternatively spliced transcripts from the pseudogene CYP2D7. My objective was to understand the role of SV5-in (splice variant 5), one of several alternative splice variants transcribed from the CYP2D7 pseudogene. My results indicate that SV5-in mRNA causes an increase in CYP2D6 protein levels and suggest that there is a role for SV5-in in regulation of CYP2D6 expression. ^ Second, CYP4F11 is a recently discovered and uncharacterized isoform, derived from the CYP4F subfamily. It metabolizes several clinically relevant drugs (i.e.—erythromycin and benzphetamine) and some endogenous inflammatory mediators (i.e.—LTB4). After evaluation of microarray data, I observed an increase in CYP4F11 mRNA levels from wild-type HCT116 cells compared to p53-null cells. Our objectives were to explore and understand this connection between p53 and CYP4F11. Microarray data were confirmed by Q-PCR, after which this effect was again observed at the protein level via Western blot and again at the promoter level via luciferase assay and chromatin immunoprecipitation. Our results indicate that p53 protein regulates expression of CYP4F11 mRNA and protein through CYP4F11 promoter binding (note that p53 binding to CYP4F11 DNA was not shown to be direct). These results signify a whole new level of regulation of drug metabolizing enzymes by p53. ^ An understanding of CYP4F11 regulation by p53 could help us understand another pathway leading to apoptosis or cell growth arrest. This can aid future drug studies and discover new drug metabolism pathways under the control of a tumor suppressor protein. An understanding of the CYP2D6 regulation pathway could illuminate the role of non-coding RNAs in the P450 field and potentially explain several inter-individual drug response variations observed in clinical medicine that are not yet completely explained by genotyping analysis. ^
Resumo:
Three components of carbon allocation, biomass, flux, and partitioning, were measured in two contrasting Amazon forests growing under similar climatic conditions. Allocation to aboveground compartments was highest in a high-stature forest growing on clay soils, while allocation to fine roots was higher in a short-stature forest growing on white sands. Differences in carbon allocation components where not proportional between the two forests, with soils controlling a trade-off between allocation to fine roots versus aboveground parts.