364 resultados para Trypanothione synthetase
Resumo:
Piracanjuba (Brycon orbignyanus) is a Brazilian migratory fast-growing omnivore, very appreciated as a sport fish, which is threatened to extinction in Southern Brazil due to stock over exploitation and dam building. Therefore, efforts have been made to raise this fish in captivity for reintroduction and aquaculture purposes. In the present study, the effects of different dietary protein and lipid concentrations on piracanjuba fingerlings growth performance, feed utilization, body composition, hepatosomatic index (HSI) and activity of the lipogenic enzymes fatty acid synthetase (FAS), glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) were investigated using a 2 x 3 factorial experiment. Six casein-gelatin based diets were prepared combining two protein (30% and 32%) and three lipid concentrations (5.5%, 8.8% and 12.1%). Eleven fish, average weight 11.30 +/- 0.1 g, were held in each of 18 100-1 aquaria, supplied with recirculating freshwater. Each diet was randomly assigned to triplicate groups of fish and fed to apparent satiation, twice a day for 100 d. Piracanjuba fingerlings' daily weight gain (0.36-0.40 g), specific growth rate (1.43-1.51%), feed utilization and HSI were not influenced by dietary protein or lipid concentration. However, body composition was directly affected by dietary treatment. An increase in body fat and dry matter was observed as dietary lipid increased, for both dietary protein concentrations tested. The activity of FAS was depressed by increasing dietary fat levels but the G6PD activity did not differ among dietary treatments, although ME activity showed some regulation by dietary protein. These results indicate that an increase from 5.5% to 12.1% in the dietary lipid, at a dietary protein concentration of 30% or 32%, promotes body fat accumulation in piracanjuba fingerlings with no improvement in growth, suggesting that the lipid requirement for this species should be 5% or less, when raised for commercial purposes. However, the additional energy reserve from body fat accumulation could be desirable for piracanjuba fingerlings produced for stock enhancement. (C) 2003 Editions scientifiques et medicales Elsevier SAS and Ifremer/IRD/Inra/Cemagref. All rights reserved.
Resumo:
The emergence of mass spectrometry-based proteomics has revolutionized the study of proteins and their abundances, functions, interactions, and modifications. However, in a multicellular organism, it is difficult to monitor dynamic changes in protein synthesis in a specific cell type within its native environment. In this thesis, we describe methods that enable the metabolic labeling, purification, and analysis of proteins in specific cell types and during defined periods in live animals. We first engineered a eukaryotic phenylalanyl-tRNA synthetase (PheRS) to selectively recognize the unnatural L-phenylalanine analog p-azido-L-phenylalanine (Azf). Using Caenorhabditis elegans, we expressed the engineered PheRS in a cell type of choice (i.e. body wall muscles, intestinal epithelial cells, neurons, pharyngeal muscles), permitting proteins in those cells -- and only those cells -- to be labeled with azides. Labeled proteins are therefore subject to "click" conjugation to cyclooctyne-functionalized affnity probes, separation from the rest of the protein pool and identification by mass spectrometry. By coupling our methodology with heavy isotopic labeling, we successfully identified proteins -- including proteins with previously unknown expression patterns -- expressed in targeted subsets of cells. While cell types like body wall or pharyngeal muscles can be targeted with a single promoter, many cells cannot; spatiotemporal selectivity typically results from the combinatorial action of multiple regulators. To enhance spatiotemporal selectivity, we next developed a two-component system to drive overlapping -- but not identical -- patterns of expression of engineered PheRS, restricting labeling to cells that express both elements. Specifically, we developed a split-intein-based split-PheRS system for highly efficient PheRS-reconstitution through protein splicing. Together, these tools represent a powerful approach for unbiased discovery of proteins uniquely expressed in a subset of cells at specific developmental stages.
Resumo:
Several biosurfactants with antagonistic activity are produced by a variety of microorganisms. Lipopeptides (LPPs) produced by some Bacillus strains, including surfactin, fengycin and iturin are synthesized nonribosomally by mega-peptide synthetase (NRPS) units and they are particularly relevant as antifungal agents. Characterisation, identification and evaluation of the potentials of several bacterial isolates were undertaken in order to establish the production of active lipopeptides against biodeteriogenic fungi from heritage assets. Analysis of the iturin operon revealed four open reading frames (ORFs) with the structural organisation of the peptide synthetases. Therefore, this work adopted a molecular procedure to access antifungal potential of LPP production by Bacillus strains in order to exploit the bioactive compounds synthesis as a green natural approach to be applied in biodegraded cultural heritage context. The results reveal that the bacterial strains with higher antifungal potential exhibit the same morphological and biochemical characteristics, belonging to the genera Bacillus. On the other hand, the higher iturinic genetic expression, for Bacillus sp. 3 and Bacillus sp. 4, is in accordance with the culture antifungal spectra. Accordingly, the adopted methodology combining antifungal screening and molecular data is represent a valuable tool for quick identification of iturin-producing strains, constituting an effective approach for confirming the selection of lipopeptides producer strains.
Resumo:
Leishmaniasis is one of the major parasitic diseases among neglected tropical diseases with a high rate of morbidity and mortality. Human migration and climate change have spread the disease from limited endemic areas all over the world, also reaching regions in Southern Europe, and causing significant health and economic burden. The currently available treatments are far from ideal due to host toxicity, elevated cost, and increasing rates of drug resistance. Safer and more effective drugs are thus urgently required. Nevertheless, the identification of new chemical entities for leishmaniasis has proven to be incredibly hard and exacerbated by the scarcity of well-validated targets. Trypanothione reductase (TR) represents one robustly validated target in Leishmania that fulfils most of the requirements for a good drug target. However, due to the large and featureless active site, TR is considered extremely challenging and almost undruggable by small molecules. This scenario advocates the development of new chemical entities by unlocking new modalities for leishmaniasis drug discovery. The classical toolbox for drug discovery has enormously expanded in the last decade, and medicinal chemists can now strategize across a variety of new chemical modalities and a vast chemical space, to efficiently modulate challenging targets and provide effective treatments. Beyond others, Targeted p Protein Degradation (TPD) is an emerging strategy that uses small molecules to hijack endogenous proteolysis systems to degrade disease-relevant proteins and thus reduce their abundance in the cell. Based on these considerations, this thesis aimed to develop new strategies for leishmaniasis drug discovery while embracing novel chemical modalities and navigating the chemical space by chasing unprecedented chemotypes. This has been achieved by four complementary projects. We believe that these next-generation chemical modalities for leishmaniasis will play an important role in what was previously thought to be a drug discovery landscape dominated by small molecules.