469 resultados para Triassic rifting
Resumo:
We report the Sr, Nd and Pb isotopic compositions (1) of 66 lava flows and dikes spanning the circa 15 Myr subaerial volcanic history of Gran Canaria and (2) of five Miocene through Cretaceous sediment samples from DSDP site 397, located 100 km south of Gran Canaria. The isotope ratios of the Gran Canaria samples vary for 87Sr/86Sr: 0.70302-0.70346, for 143Nd/144Nd: 0.51275-0.51298, and for 206Pb/204Pb: 18.76-20.01. The Miocene and the Pliocene-Recent volcanics form distinct trends on isotope correlation diagrams. The most SiO2-undersaturated volcanics from each group have the least radiogenic Sr and most radiogenic Pb, whereas evolved volcanics from each group have the most radiogenic Sr and least radiogenic Pb. In the Pliocene-Recent group, the most undersaturated basalts also have the most radiogenic Nd, and the evolved volcanics have the least radiogenic Nd. The most SiO2-saturated basalts have intermediate compositions within each age group. Although the two age groups have overlapping Sr and Nd isotope ratios, the Pliocene-Recent volcanics have less radiogenic Pb than the Miocene volcanics. At least four components are required to explain the isotope systematics of Gran Canaria by mixing. There is no evidence for crustal contamination in any of the volcanics. The most undersaturated Miocene volcanics fall within the field for the two youngest and westernmost Canary Islands in all isotope correlation diagrams and thus appear to have the most plume-like (high 238U/204Pb) HIMU-like composition. During the Pliocene-Recent epochs, the plume was located to the west of Gran Canaria. The isotopic composition of the most undersaturated Pliocene-Recent volcanics may reflect entrainment of asthenospheric material (with a depleted mantle (DM)-like composition), as plume material was transported through the upper asthenosphere to the base of the lithosphere beneath Gran Canaria. The shift in isotopic composition with increasing SiO2-saturation in the basalts and degree of differentiation for all volcanics is interpreted to reflect assimilation of enriched mantle (EM1 and EM2) in the lithosphere beneath Gran Canaria. This enriched mantle may have been derived from the continental lithospheric mantle beneath the West African Craton by thermal erosion or delamination during rifting of Pangaea. This study suggests that the enriched mantle components (EM1 and EM2) may be stored in the shallow mantle, whereas the HIMU component may have a deeper origin.
Resumo:
Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.
Resumo:
Oxygen isotopic composition of zeolite pore-fill cements in andesitic volcaniclastic sandstones recovered from DSDP Site 445 ranges from +30.1 to +17.8? (SMOW) downhole. This change is controlled by large heat flow from the basement which caused early diagenetic emplacement of zeolites during early basin rifting. d18O-values of late calcite cements range from +25.1 to +27.4? (SMOW); their petrographic relation and inferred temperature of formation suggest that calcite cements were formed during late stages of diagenesis. Isotopic composition in these sandstones is in agreement with mineral paragenesis determined microscopically.
Resumo:
Cretaceous basalts recovered during Ocean Drilling Program Leg 183 at Site 1137 on the Kerguelen Plateau show remarkable geochemical similarities to Cretaceous continental tholeiites located on the continental margins of eastern India (Rajmahal Traps) and southwestern Australia (Bunbury basalt). Major and trace element and Sr-Nd-Pb isotopic compositions of the Site 1137 basalts are consistent with assimilation of Gondwanan continental crust (from 5 to 7%) by Kerguelen plume-derived magmas. In light of the requirement for crustal contamination of the Kerguelen Plateau basalts, we re-examine the early tectonic environment of the initial Kerguelen plume head. Although a causal role of the Kerguelen plume in the breakup of Eastern Gondwana cannot be ascertained, we demonstrate the need for the presence of the Kerguelen plume early during continental rifting. Activity resulting from interactions by the newly formed Indian and Australian continental margins and the Kerguelen plume may have resulted in stranded fragments of continental crust, isolated at shallow levels in the Indian Ocean lithosphere.
Resumo:
To examine the processes and histories of arc volcanism and of volcanism associated with backarc rifting. 130 samples containing igneous glass shards were taken from the Plioccne-Quatemai^ succession on the rift Hank (Site 788) and the Quaternary fill in the basin fill of the Sumisu Rift (Sites 790 and 791). These samples were subsequently analyzed at the University of Illinois at Chicago and Shizuoka University. The oxides determined by electron probe do not account for the total weight of the material; differences between summed oxides and 100% arise from the water contents, probably augmented by minor losses thai result from alkali vaporization during analysis. Weight losses in colorless glasses are up to 9%; those in brown glasses (dacitcs to basalts) arc no more than 4.5%; shards from the rift-flank (possibly caused by prolonged proximity to ihc scafloor) generally have higher values than those from the rift-basin fill How much of the lost water is magmatic, and how much is hydrated is uncertain; however, although the shards absorb potassium, calcium, and magnesium during hydration in the deep sea, they do so only to a minor extent that does not significantly alter their major element compositions. Therefore, the electron-probe results are useful in evaluating the magmatism recorded by the shards. Pre- and syn-rift Izu-Bonin volcanism were overwhelmingly dominated by rhyolile explosions, demonstrating that island arcs may experience significant silicic volcanism in addition to the extensive basaltic and basaltic andestic activity, documented in many arcs since the 1970s, that occurs in conjunction with the andesitic volcanism formerly thought to be dominant. Andesitic eruptions also occurred before rifting, but the andesitic component in our samples is minor. All the pre- and syn-rift rhyolites and andesites belong to the low-alkali island-arc tholeiitic suite, and contrast markedly with the alkali products of Holocene volcanism on the northernmost Mariana Arc that have been attributed to nascent rifting. The Quaternary dacites and andesites atop the rift flank and in the rift-basin fill are more potassic than those of Pliocene age, as a result of assimilation from the upper arc crust, or from variations in degrees of partial melting of the source magmas, or from metasomatic fluids. All the glass layers from the rift-flank samples belong to low-K arc-tholeiitic suites. Half of those in the Pliocene succession are exclusively rhyolitic: the others contain minor admixtures of dacite and andesite, or andesite and either basaltic andesite or basalt. In Contrast, the Quaternary (syn-rift) volcaniclastics atop the rift-flank lack basalt and basaltic andesite shards. These youngest sediments of the rift flank show close compositional affinities with five thick layers of coarse, rhyolitic pumice deposits in the basin fill, the two oldest more silicic than the younger ones. The coarse layers, and most thin ash layers that occur in hemipelagites below and intercalated between them, are low-K rhyolites and therefore probably came from sources in the arc. However, several thin rhyolitic ash beds in the hemipelagites are abnormally enriched in potassium and must have been provided by more distal sources, most likely to the west in Japan. Remarkably, the Pliocene-Pleistocene geochemistry of the volcanic front does not appear to have been influenced by the syn-rift basaltic volcanism only a few kilometers away. Rare, thin layers of basaltic ash near the bases of the rift-basin successions are not derived from the arc. They deviate strongly from trends that the arc-derived glasses display on oxide-oxide plots, and show close affinities to the basalts empted all over the Sumisu Rift during rifting. These basalts, and the basaltic ashes in the basal rift-basin fill, arc compositionally similar to those erupted from mature backarc basins elsewhere.
Resumo:
The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.
Resumo:
The benthic foraminifer fauna at Sumisu Rift Sites 790 and 791 indicates that a deep open-ocean (>2300 m) or a basin with open-ocean access existed between 1.1 and 0.7 Ma at the time of the initiation of rifting. The appearance of a low- to medium-oxygen fauna (1600-2300 m) between 0.7 and 0.5 Ma suggests that the open-ocean access may have been terminated at this time because of the development of volcanoes and rift flank uplifts around the basin. The occurrence of low-oxygen faunas at 0.03 Ma suggests a secondary closing of the basin. The lower bathyal benthic faunas from lower Pliocene sediments of rift margin Site 788 suggest about 0.6-1.6 km of total basement uplift. This uplift may have led to the formation of the major hiatus between 2.3 and <0.3 Ma. The faunal changes of benthic foraminifers at Sites 792 and 793 in the forearc basin document a shallowing water depth from below the carbonate compensation depth (CCD) (about 3.5 km) in the late early Oligocene to the present depths of 1800 and 2975 m, respectively. These data suggest about 1 km of total basement uplift in the inner part of the forearc basin (Site 792) and about 0.6 km total basement subsidence in the central part of the forearc basin (Site 793) since about 31 Ma. The former uplift led to a thinner sediment accumulation (800 m) and the latter subsidence to a thicker sediment accumulation (1400 m) at these sites. Faunal changes of benthic foraminifers observed in Sites 782 and 786 sequences drilled at the outer-arc high document a deepening water depth from 1.3 to 2.1 km in late Eocene to the present depth of about 3 km. These data suggest about 1.1-1.9 and 1.3-2.1 km of total basement subsidence at Sites 786 and 782, respectively. These results indicate total basement uplift in the inner part of the Bonin arc-trench system since late Oligocene and total basement subsidence in the outer part of the system since late Eocene. The last occurrence (LO) of Stilostomella spp. and Pleurostomella spp. and the first occurrence (F0) of Bulimina aculeata d'Orbigny occurred consistently at 0.7 Ma at all three arc proximal sites (790,791, and 792). This fact is taken to suggest a change of water mass, from one originating from the central part of the ocean to that originating from ocean-margin areas at that time.
Resumo:
New petrographic and compositional data were reported for 143 samples of core recovered from Sites 832 and 833 during Ocean Drilling Program (ODP) Leg 134. Site 832 is located in the center and Site 833 is on the eastern edge of the North Aoba Basin, in the central part of the New Hebrides Island Arc. This basin is bounded on the east (Espiritu Santo and Malakula islands) and west (Pentecost and Maewo islands) by uplifted volcano-sedimentary ridges associated with collision of the d'Entrecasteaux Zone west of the arc. The currently active Central Belt volcanic front extends through the center of this basin and includes the shield volcanoes of Aoba, Ambrym, and Santa Maria islands. The oldest rocks recovered by drilling are the lithostratigraphic Unit VII Middle Miocene volcanic breccias in Hole 832B. Lava clasts are basaltic to andesitic, and the dominant phenocryst assemblage is plagioclase + augite + orthopyroxene + olivine. These clasts characteristically contain orthopyroxene, and show a low to medium K calc-alkaline differentiation trend. They are tentatively correlated with poorly documented Miocene calc-alkaline lavas and intrusives on adjacent Espiritu Santo Island, although this correlation demands that the measured K-Ar of 5.66 Ma for one clast is too young, due to alteration and Ar loss. Lava clasts in the Hole 832B Pliocene-Pleistocene sequence are mainly ankaramite or augite-rich basalt and basaltic andesite; two of the most evolved andesites have hornblende phenocrysts. These lavas vary from medium- to high-K compositions and are derived from a spectrum of parental magmas for which their LILE and HFSE contents show a broad inverse correlation with SiO2 contents. We hypothesize that this spectrum results from partial melting of an essentially similar mantle source, with the low-SiO2 high HFSE melts derived by lower degrees of partial melting probably at higher pressures than the high SiO2, low HFSE magmas. This same spectrum of compositions occurs on the adjacent Central Chain volcanoes of Aoba and Santa Maria, although the relatively high-HFSE series is known only from Aoba. Late Pliocene to Pleistocene lava breccias in Hole 833B contain volcanic clasts including ankaramite and augite + olivine + plagioclase-phyric basalt and rare hornblende andesite. These clasts are low-K compositions with flat REE patterns and have geochemical affinities quite different from those recovered from the central part of the basin (Hole 832B). Compositionally very similar lavas occur on Merelava volcano, 80 km north of Site 833, which sits on the edge of the juvenile Northern (Jean Charcot) Trough backarc basin that has been rifting the northern part of the New Hebrides Island Arc since 2-3 Ma. The basal sedimentary rocks in Hole 833B are intruded by a series of Middle Pliocene plagioclase + augite +/- olivine-phyric sills with characteristically high-K evolved basalt to andesite compositions, transitional to shoshonite. These are compositionally correlated with, though ~3 m.y. older than, the high-HFSE series described from Aoba. The calc-alkaline clasts in Unit VII of Hole 832B, correlated with similar lavas of Espiritu Santo Island further west, presumably were erupted before subduction polarity reversal perhaps 6-10 Ma. All other samples are younger than subduction reversal and were generated above the currently subduction slab. The preponderance in the North Aoba Basin and adjacent Central Chain islands of relatively high-K basaltic samples, some with transitional alkaline compositions, may reflect a response to collision of the d'Entrecasteaux Zone with the arc some 2-4 Ma. This may have modified the thermal structure of the subduction zone, driving magma generation processes to deeper levels than are present normally along the reminder of the New Hebrides Island Arc.
Resumo:
Sedimentary sections recovered from the Tonga platform and forearc during Ocean Drilling Program Leg 135 provide a record of the sedimentary evolution of the active margin of the Indo-Australian Plate from late Eocene time to the Present. Facies analyses of the sediments, coupled with interpretations of downhole Formation MicroScanner logs, allow the complete sedimentary and subsidence history of each site to be reconstructed. After taking into account the water depths in which the sediments were deposited and their subsequent compaction, the forearc region of the Tofua Arc (Site 841) can be seen to have experienced an initial period of tectonic subsidence dating from 35.5 Ma. Subsidence has probably been gradual since that time, with possible phases of accelerated subsidence, starting at 16.2 and 10.0 Ma. The Tonga Platform (Site 840) records only the last 7.0 Ma of arc evolution. However, the increased accuracy of paleowater depth determinations possible with shallow-water platform sediments allows the resolution of a distinct increase in subsidence rates at 5.30 Ma. Thus, sedimentology and subsidence analyses show the existence of at least two, and possibly four, separate subsidence events in the forearc region. Subsidence dating from 35.5 Ma is linked to rifting of the South Fiji Basin. Any subsidence dating from 16.2 Ma at Site 841 does not correlate with another known tectonic event and is perhaps linked to localized extensional faulting related to slab roll back during steady-state subduction. Subsidence from 10.0 Ma coincides with the breakup of the early Tertiary Vitiaz Arc because of the subduction polarity reversal in the New Hebrides and the subsequent readjustment of the plate boundary geometry. More recently, rapid subsidence and deposition of a upward-fining cycle from 5.30 Ma to the Present at Site 840 is thought to relate to rifting of the Lau Basin. Sedimentation is principally controlled by tectonic activity, with variations in eustatic sea level playing a significant, but subordinate role. Subduction of the Louisville Seamount Chain seems to have disrupted the forearc region locally, although it had only a modest effect on the subsidence history and sedimentation of the Tonga Platform as a whole.
Resumo:
Fossil leaves of the Voltziales, an ancestral group of conifers, rank among the most common plant fossils in the Triassic of Gondwana. Even though the foliage taxon Heidiphyllum has been known for more than 150 years, our knowledge of the reproductive organs of these conifers still remains very incomplete. Seed cones assigned to Telemachus have become increasingly well understood in recent decades, but the pollen cones belonging to these Mesozoic conifers are rare. In this contribution we describe the first compression material of a voltzialean pollen cone from Upper Triassic strata of the Transantarctic Mountains. The cone can be assigned to Switzianthus Anderson & Anderson, a genus that was previously assumed to belong to an enigmatic group of pteridosperms from the Triassic Molteno Formation of South Africa. The similarities of cuticle and pollen morphology, together with co-occurrence at all known localities, indicate that Switzianthus most probably represents the pollen organ of the ubiquitous Heidiphyllum/Telemachus plant.
Resumo:
In contrast to the adjacent parts of the Transantarctic Mountains, the Mesozoic macrofossil record of north Victoria Land remains poorly documented. During the Ninth German Antarctic North Victoria Land Expedition (GANOVEX IX 2005/2006) twelve fossil sites in southern north Victoria Land were discovered and sampled. Fossils from the Triassic to Early Jurassic Section Peak Formation were collected from Archambault Ridge, Anderton Glacier, Skinner Ridge, Timber Peak, Vulcan Hills, Runaway Hills, Section Peak and Shafer Peak. These localities have yielded abundant fossil wood and compressions of horsetails, ferns, and seed ferns. In addition, several beetle elytra were found at Timber Peak. Fossil localities of the overlying Shafer Peak Formation and Exposure Hill-type deposits occur at Shafer Peak and in the Mount Carson area, and have yielded various trace fossils, permineralized wood, leaf compressions, and conchostracans. Two newly discovered fossil sites are associated with the late Early Jurassic Kirkpatrick lava flows. Upright-standing tree trunks have been recorded at Suture Bench, and highly fossiliferous sedimentary interbeds occur at the southwestern end of the Mesa Range. Of special interest is the exquisite fossil preservation at some of the sites. Compression fossils from Timber Peak and Shafer Peak contain well-preserved cuticles, which is very rare in the Antarctic. An Early Jurassic permineralized deposit at Mount Carson contains structurally preserved ferns. Furthermore, the arthropod fossils from sedimentary interbeds at the Mesa Range are preserved in minute detail, including antennae and limb spines of a blattid insect.
Resumo:
A ridge of peridotite was drilled off of the Galicia margin (Hole 637A) during ODP Leg 103. The ridge is located at the approximate boundary between oceanic and continental crust. This setting is of interest because the peridotite may be representative of upwelling upper mantle beneath an incipient ocean basin. The composition of the Galicia margin peridotite is compared with those of other North Atlantic peridotites. Hole 637A ultramafic lithologies include clinopyroxene-rich spinel harzburgite and lherzolite, as well as plagioclase-bearing peridotites. Variations in mineral modal abundances and mineral compositions are observed but are not systematic. The peridotites are broadly similar in composition to other peridotites recovered from ocean basins, but the mineral compositions and abundances suggest that they are less depleted in basaltic components than other North Atlantic peridotites by about 10%. In particular, the peridotites are enriched in the magmaphilic elements Na, Al, and Ti, as compared with other abyssal peridotites. The high abundances of these elements suggest that the Hole 637A peridotites had experienced, at most, very small amounts of partial melting prior to their emplacement. The presence of plagioclase rimming spinel in some samples suggests that the peridotite last equilibrated at about 9 kbar, near the transition between plagioclase- and spinel-peridotite stability fields. Temperatures of equilibration of the peridotite are calculated as 900°-1100°C. The relatively undepleted composition of the peridotite indicates that it was emplaced at a shallow mantle level under a relatively cool thermal regime and cooled below solidus temperatures without having participated in any significant partial melting and basalt production. This is consistent with the emplacement of the peridotite during incipient rifting of the ocean basin, before a true spreading center was established.
Resumo:
Five hundred meters of a unique Upper Cretaceous Cr-rich glauconitic sequence (Unit III) that overlies a 3-m-thick alkali-basalt flow with underlying epiclastic volcanogenic sediments was drilled at ODP Leg 120 Site 748. The Cr-rich glauconitic sequence is lithostratigraphically and biostratigraphically divided into three subunits (IIIA, IIIB, IIIC) that can also be recognized by the Cr concentration of the bulk sediment, which is low (<200 ppm) in Subunits IIIC and IIIA and high (400-800 ppm) in Subunit IIIB. The Cr enrichment is caused by Cr-spinel, which is the only significant heavy mineral component beside Fe-Ti ores. Other Cr-bearing components are glauconite pellets and possibly some other clay minerals. The glauconitic sequence of Subunit IIIB was formed by reworking of glauconite and volcanogenic components that were transported restricted distances and redeposited downslope by mass-transportation processes. The site of formation was a nearshore, shallow inner shelf environment, and final deposition may have been on the outer part of a narrow shelf, at the slope toward the restricted, probably synsedimentary, faulted Raggatt Basin. The volcanic edifices uncovered on land were tholeiitic basalts (T-MORB), alkali-basaltic (OIB) and (?)silicic volcanic complexes, and ultramafic rocks. The latter were the ultimate source for the Cr-spinel contribution. Terrestrial aqueous solutions carried Fe, K, Cr, Si, and probably Al into the marine environment, where, depending on the redox conditions of microenvironments in the sediment, green (Fe- and K-rich) or brown (Al-rich) glauconite pellets formed. The Upper Cretaceous glauconitic sequence at Site 748 on the Southern Kerguelen Plateau constitutes the transition in space and time from terrestrial to marine, from magmatically active subaerial to magmatically passive submarine conditions, and from a tranquil platform to active rifting conditions.
Resumo:
Extract from related chapter 5.5.2 in reference: The Orca Seamount was discovered in the central basin of the Bransfield Strait around the posit 62°26'S and 58°24'W on the west side of the Antarctic Peninsula, the most western area of the south polar continent. Through the discovery was made known in 1987, it was only during three bathymetric surveys with high resolution fan echosounders between 1993 and 1995 that the character and complete shape of a remarkable volcano seamount became evident. The data acquisition and processing revealed a spectacular crater of 350 m depth. The relative hight of this 3 km wide "caldera" rim is 550 m with a basal diameter of the seamount cone of 11 km. Its flanks are about 15° steep but in some places the slope reaches up to 36°. The nearly circular shape of the Orca edifice spreads outh with several pronounced spurs, trending parallel to the basin axis in a northeast-southwest direction. The Bransfield Strait is a trough-shaped basin of 400 km length and 2 km depth between the South Shetland Island Arc and the Antarctic Peninsula, formed by rifting behind the islands. The separation of the South Shetland island chain from the peninsula began possibly several million years ago. The active rifting is still going on however, and has caused recent earthquakes and volcanism along the Bransfield Strait. The Strait hosts a chain of submerged seamounts of volcanic origin with the presently inactive Ora Seamount as the most spectacular one. The South Shelfand Island owe their existence to a subduction related volcanism which is perhaps 5-10 times older than the age of Orca and the other seamounts along the central basin of the Bransfield Strait.