983 resultados para Toda lattice hierarchy
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dominant species are those which delimit and defend territories from other individuals of the same or different species. Subordinate species are those which, furtive and sneakily, use sources of nectar from other individuals. This study aimed to describe the aggressive interactions between species of hummingbirds, define which species are dominant and which are subordinate, investigate if the sharing of resources occurs during the visits, and compare the behaviour of the dominant species in different strata (tree, arbustive and herbaceous). The species observed interacting with Anthracothorax nigricollis Vieillot 1817 were Phaethornis pretrei Lesson and Delattrer 1839, Thalurania furcata Gmelin 1788, and Polytmus guainumbi Pallas 1764. Nine behavioural acts grouped into four categories were identified and described. The dominant species is A. nigricollis (with 0.9 of the attacks), followed by T. furcata (with 0.07) and P. pretrei (with 0.03). The resource sharing was seen only in the shrub layer, in C. surinamensis, in which there was intraspecific and interspecific sharing. A. nigricollis showed higher interspecific toleration, T. furcata (0.27) and P. pretrei (0.55) than intraspecific A. nigricollis (0.18). The frequency of occurrence of behaviours expressed by A. nigricollis in the three vegetation strata differed significantly.
Resumo:
A method is presented for constructing the general solution to higher Hamiltonians (nonquadratic in the momenta) of the Toda hierarchies of integrable models associated with a simple Lie group G. The method is representation independent and is based on a modified version of the Lax operator. It constitutes a generalization of the method used to construct the solutions of the Toda molecule models. The SL(3) and SL(4) cases are discussed in detail. © 1990 American Institute of Physics.
Resumo:
As recently shown the conformal affine Toda models can be obtained via hamiltonian reduction from a two-loop Kac-Moody algebra. In this paper we propose a systematic procedure to analyze the higher spin symmetries of the conformal affine Toda models. The method is based on an explicit construction of infinite towers of extended conformal symmetry generators. Two fundamental building blocks of this construction are special spin-one and -two primary fields characterizing the conformal structure of these models. The connection to the algebra of area preserving diffeomorphisms on a two-manifold (w∞ algebra) is established.
Resumo:
It is shown that the affine Toda models (AT) constitute a gauge fixed version of the conformal affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota τ-functions are introduced and soliton solutions for the AT and CAT models associated to SL̂ (r+1) and SP̂ (r) are constructed.
Resumo:
We show that the 2-matrix string model corresponds to a coupled system of 2 + 1-dimensional KP and modified KP ((m)KP2+1) integrable equations subject to a specific symmetry constraint. The latter together with the Miura-Konopelchenko map for (m)KP2+1 are the continuum incarnation of the matrix string equation. The (m)KP2+1 Miura and Backhand transformations are natural consequences of the underlying lattice structure. The constrained (m)KP2+1 system is equivalent to a 1 + 1-dimensional generalized KP-KdV hierarchy related to graded SL(3,1). We provide an explicit representation of this hierarchy, including the associated W(2,1)-algebra of the second Hamiltonian structure, in terms of free currents.
Resumo:
We show that the multi-boson KP hierarchies possess a class of discrete symmetries linking them to discrete Toda systems. These discrete symmetries are generated by the similarity transformation of the corresponding Lax operator. This establishes a canonical nature of the discrete transformations. The spectral equation, which defines both the lattice system and the corresponding Lax operator, plays a key role in determining pertinent symmetry structure. We also introduce the concept of the square root lattice leading to a family of new pseudo-differential operators with covariance under additional Bäcklund transformations.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Resumo:
We study the Boussinesq equation from the point of view of a multiple-time reductive perturbation method. As a consequence of the elimination of the secular producing terms through the use of the Korteweg-de Vries hierarchy, we show that the solitary-wave of the Boussinesq equation is a solitary-wave satisfying simultaneously all equations of the Korteweg-de Vries hierarchy, each one in an appropriate slow time variable. © 1995 American Institute of Physics.
Resumo:
By using the multiple scale method with the simultaneous introduction of multiple times, we study the propagation of long surface-waves in a shallow inviscid fluid. As a consequence of the requirements of scale invariance and absence of secular terms in each order of the perturbative expansion, we show that the Korteweg-de Vries hierarchy equations do play a role in the description of such waves. Finally, we show that this procedure of eliminating secularities is closely related to the renormalization technique introduced by Kodama and Taniuti. © 1995 American Institute of Physics.
Resumo:
Quite recently we modified the original model of Sarkar et al. for cubic metals in extending the ion-ion interaction, ion-electron interaction and the introduction of crystal equilibrium condition. We applied our scheme to alkali metals. We studied here the lattice dynamics of noble metals on our approach by calculating phonon dispersion relations along the three principal symmetry directions, [ξ00], [ξξ00] and [ξξξ] and the (θ-T) curves of three noble metals: copper, silver and gold. We obtained reasonable agreement with the experimental findings.
Resumo:
We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.
Resumo:
We apply a multiple-time version of the reductive perturbation method to study long waves as governed by the shallow water wave model equation. As a consequence of the requirement of a secularity-free perturbation theory, we show that the well known N-soliton dynamics of the shallow water wave equation, in the particular case of α = 2β, can be reduced to the N-soliton solution that satisfies simultaneously all equations of the Korteweg-de Vries hierarchy.
Resumo:
We investigate the flux penetration patterns and matching fields of a long cylindrical wire of circular cross section in the presence of an external magnetic field. For this study we write the London theory for a long cylinder both for the mixed and Meissner states, with boundary conditions appropriate for this geometry. Using the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to the vortex position and we obtain the ground state of the vortex lattice for N=3 up to 18 vortices. The free energy of the Meissner and mixed states provides expressions for the matching fields. We find that, as in the case of samples of different geometry, the finite-size effect provokes a delay on the vortex penetration and a vortex accumulation in the center of the sample. The vortex patterns obtained are in good agreement with experimental results.
Resumo:
The lattice dynamical studies of the metallic glass Ca70Mg30 by Bhatia and Singh on their model contained two shortcomings, firstly the electron-ion interaction matrix was wrong and secondly, the numerical value of the bulk modulus of the electron gas was accepted arbitrarily. By modifying the electron-ion dynamical matrix and determining all the model parameters from the experimental data, we made a fresh study of the lattice dynamics of Ca70Mg30 and compared it to the earlier studies of Bhatia and Singh and also with experimental phonons.