977 resultados para Tiopurina metil transferase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Retinal degeneration has been associated with iron accumulation in age-related macular degeneration (AMD), and in several rodent models that had one or several iron regulating protein impairments. We investigated the iron concentration and the protective role of human transferrin (hTf) in rd10 mice, a model of retinal degeneration. METHODS: The proton-induced X-ray emission (PIXE) method was used to quantify iron in rd10 mice 2, 3, and 4 weeks after birth. We generated mice with the β-phosphodiesterase mutation and hTf expression by crossbreeding rd10 mice with TghTf mice (rd10/hTf mice). The photoreceptor loss and apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling in 3-week-old rd10/hTf mice and compared with 3-week-old rd10 mice. The neuroprotective effect of hTf was analyzed in 5-day-old rd10 mice treated by intraperitoneal administration with hTf for up to 25 days. The retinal hTf concentrations and the thickness of the outer nuclear layer were quantified in all treated mice at 25 days postnatally. RESULTS: PIXE analysis demonstrated an age-dependent iron accumulation in the photoreceptors of rd10 mice. The rd10/hTf mice had the rd10 mutation, expressed high levels of hTf, and showed a significant decrease in photoreceptor death. In addition, rd10 mice intraperitoneally treated with hTf resulted in the retinal presence of hTf and a dose-dependent reduction in photoreceptor degeneration. CONCLUSIONS: Our results suggest that iron accumulation in the retinas of rd10 mutant mice is associated with photoreceptor degeneration. For the first time, the enhanced survival of cones and rods in the retina of this model has been demonstrated through overexpression or systemic administration of hTf. This study highlights the therapeutic potential of Tf to inhibit iron-induced photoreceptor cell death observed in degenerative diseases such as retinitis pigmentosa and age-related macular degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

a partir de ADN genómico obtenido de las células nucleadas de sangre periférica de 103 pacientes con Cáncer de Pulmón No Microcítico (CPNM) avanzado tratados con quimioterapia basada en platino, hemos analizado la asociación entre supervivencia y cinco SNPs (Single Nucleotide Polymorphism) pertenecientes a dos grupos de genes: i) de la via metabólica del ácido fólico (Timidilato Sintetasa (TS), Metil-tetrahidrofolato Reductasa (MTHFR) y, ii) de la vía de reparación del ADN (Excision repair cross-complemeting group 1 (ERCC1) y Xeroderma pigmentosum group D (XPD).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A utilização da biomassa como fonte de matéria-prima renovável para a obtenção de biocombustíveis e produtos de consumo pode reduzir os riscos geopolíticos e de segurança energética. As hemiceluloses – um dos principais componentes da biomassa vegetal - são convertidas industrialmente em furfural (Fur) que tem uma vasta gama de aplicações, sendo, por isso, considerado um dos compostos químicos renováveis de base mais importantes para biorefinarias. Este trabalho está relacionado com a valorização química do Fur, inserindo-se no conceito da Biorefinaria e nos objetivos de investigação do laboratório associado CICECO. Foi investigada a conversão catalítica do Fur em determinados bio-produtos de interesse para diversos setores da indústria química. Em particular, alquilfurfuril éteres, ésteres alquil-4-oxopentanoato, 5-metil-2-furanonas, ácido levulínico e gama-valerolactona são importantes para a produção de bio-aditivos para combustíveis, bio-polímeros, agroquímicos, aromas e fragrâncias, solventes, etc. A conversão do Fur nos bio-produtos envolve mecanismos reacionais complexos e requer o uso de catalisadores ácidos e de redução. A realização das múltiplas etapas num único reator é importante em termos de intensificação de processos. Neste trabalho, investigou-se a conversão do Fur em bio-produtos, num reator descontínuo fechado, a 120 ºC, utilizando catalisadores multifuncionais nanocristalinos do tipo zeólito beta contendo centros ativos de zircónio (Zr) e alumínio (Al). Com base numa revisão bibliográfica, propuseram-se dois modelos cinéticos pseudo-homogéneos para a conversão do Fur. Os modelos foram testados por ajuste das equações diferenciais ordinárias, representativas dos balanços às espécies reativas num reator descontínuo isotérmico, aos resultados experimentais de concentração versus tempo do Fur e cada um dos bio-produtos. Os estudos cinéticos foram combinados com os de caracterização dos catalisadores no estudo da influência das propriedades dos materiais nos diferentes passos do mecanismo global. Os centros ácidos de Al e Zr promoveram as reações ácidas e os de Zr eram essenciais para os passos de redução. No geral, as constantes cinéticas aparentes relativas às reações ácidas desejadas aumentaram com a razão Al/Zr dos catalisadores, e as dos passos de redução aumentaram com a diminuição da razão Si/Zr. O aumento da razão Al/Zr simultaneamente promoveu as reações indesejadas, diminuindo o rendimento total dos bio-produtos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Kabuki syndrome (Niikawa-Kuroki syndrome) is a rare, multiple congenital anomalies/mental retardation syndrome characterized by a peculiar face, short stature, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies, and immunological defects. Recently mutations in the histone methyl transferase MLL2 gene have been identified as its underlying cause. METHODS: Genomic DNAs were extracted from 62 index patients clinically diagnosed as affected by Kabuki syndrome. Sanger sequencing was performed to analyze the whole coding region of the MLL2 gene including intron-exon junctions. The putative causal and possible functional effect of each nucleotide variant identified was estimated by in silico prediction tools. RESULTS: We identified 45 patients with MLL2 nucleotide variants. 38 out of the 42 variants were never described before. Consistently with previous reports, the majority are nonsense or frameshift mutations predicted to generate a truncated polypeptide. We also identified 3 indel, 7 missense and 3 splice site. CONCLUSIONS: This study emphasizes the relevance of mutational screening of the MLL2 gene among patients diagnosed with Kabuki syndrome. The identification of a large spectrum of MLL2 mutations possibly offers the opportunity to improve the actual knowledge on the clinical basis of this multiple congenital anomalies/mental retardation syndrome, design functional studies to understand the molecular mechanisms underlying this disease, establish genotype-phenotype correlations and improve clinical management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La ruta sintètica del bis(2-((difenilfosfino)metil)fenil)sulfà, Ph2PCH2-(C6H4)S(C6H4)-CH2PPh2 , DPTMephos, involucra 5 reaccions en 4 etapes ben diferenciades. Es per aquest motiu que es fa necessària una optimització de la ruta sintètica per assolir rendiments més elevats. La primera reacció parteix del sulfur de difenil i involucra la formació d’un complex litiat per acabar realitzant una carbonilació amb N,N-DMF per obtindre un dialdehid. El següent pas de la ruta passa per la reducció del producte al diol corresponent. Tot seguit ja es por preparar el substrat mitjanjant una bromació per a que en l’última etapa, s’acobli a l’estructura el grup difenilfosfino. Tant mateix s’han sintetitzat els isòmers de la DPTMephos amb [W(CO)6] i [Mo(CO)6], observant-se la formació tant dels complexos meridionals com facials i la seva interconversió. Tot seguit s’ha desenvolupat la sulfuració de la DPTMephos per obtindre els lligands tant mono com di sulfurats. També s’ha realitzat un estudi de l’espectre de RMN 31P{1H} del complex fac-[Mo(CO)3(DPTMephos)] a temperatura variable per determinar el senyal de cada fòsfor no equivalent a 200K. S’ha realitzat un estudi de forma qualitativa de les conformacions que adopta l’anell quelat de 6 baules en les conformacions tant meridional com facial d’un complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1-induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessment included histologic stainings and immunohistochemistry for glial fibrillary acidic protein, heat shock protein 70, and transferase dUTP nick-end labeling assay. During ET-1 application, we recorded (i) subarachnoid direct current (DC) electroencephalogram, (ii) local cerebral blood flow by laser-Doppler flowmetry, and (iii) changes of oxyhemoglobin and deoxyhemoglobin by spectroscopy. At an ET-1 concentration of 1 muM, at which only 6 of 12 animals generated SD, a microarea with selective neuronal death was found only in those animals demonstrating SD. In another five selected animals, which had not shown SD in response to ET-1, SD was triggered at a second cranial window by KCl and propagated from there to the window exposed to ET-1. This treatment also resulted in a microarea of neuronal damage. In contrast, SD invading from outside did not induce neuronal damage in the absence of ET-1 (n = 4) or in the presence of ET-1 if ET-1 was coapplied with BQ-123, an ET(A) receptor antagonist (n = 4). In conclusion, SD in presence of ET-1 induced a microarea of selective neuronal necrosis no matter where the SD originated. This effect of ET-1 appears to be mediated by the ET(A) receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CCAAT/enhancer-binding protein (C/EBP) family members are transcription factors involved in important physiological processes, such as cellular proliferation and differentiation, regulation of energy homeostasis, inflammation, and hematopoiesis. Transcriptional activation by C/EBPalpha and C/EBPbeta involves the coactivators CREB-binding protein (CBP) and p300, which promote transcription by acetylating histones and recruiting basal transcription factors. In this study, we show that C/EBPdelta is also using CBP as a coactivator. Based on sequence homology with C/EBPalpha and -beta, we identify in C/EBPdelta two conserved amino acid segments that are necessary for the physical interaction with CBP. Using reporter gene assays, we demonstrate that mutation of these residues prevents CBP recruitment and diminishes the transactivating potential of C/EBPdelta. In addition, our results indicate that C/EBP family members not only recruit CBP but specifically induce its phosphorylation. We provide evidence that CBP phosphorylation depends on its interaction with C/EBPdelta and define point mutations within one of the two conserved amino acid segments of C/EBPdelta that abolish CBP phosphorylation as well as transcriptional activation, suggesting that this new mechanism could be important for C/EBP-mediated transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aliment Pharmacol Ther 2011; 33: 1162-1172 SUMMARY: Background  Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma and the identification of the predictors of response to antiviral therapy is an important clinical issue. Aim  To determine the independent contribution of factors including IL28B polymorphisms, IFN-gamma inducible protein-10 (IP-10) levels and the homeostasis model assessment of insulin resistance (HOMA-IR) score in predicting response to therapy in chronic hepatitis C (CHC). Methods  Multivariate analysis of factors predicting rapid (RVR) and sustained (SVR) virological response in 280 consecutive, treatment-naive CHC patients treated with peginterferon alpha and ribavirin in a prospective multicentre study. Results  Independent predictors of RVR were HCV RNA <400 000 IU/mL (OR 11.37; 95% CI 3.03-42.6), rs12980275 AA (OR 7.09; 1.97-25.56) and IP-10 (OR 0.04; 0.003-0.56) in HCV genotype 1 patients and lower baseline γ-glutamyl-transferase levels (OR = 0.02; 0.0009-0.31) in HCV genotype 3 patients. Independent predictors of SVR were rs12980275 AA (OR 9.68; 3.44-27.18), age <40 years (OR = 4.79; 1.50-15.34) and HCV RNA <400 000 IU/mL (OR 2.74; 1.03-7.27) in HCV genotype 1 patients and rs12980275 AA (OR = 6.26; 1.98-19.74) and age <40 years (OR 5.37; 1.54-18.75) in the 88 HCV genotype 1 patients without a RVR. RVR was by itself predictive of SVR in HCV genotype 1 patients (OR 33.0; 4.06-268.32) and the only independent predictor of SVR in HCV genotype 2 (OR 9.0, 1.72-46.99) or genotype 3 patients (OR 7.8, 1.43-42.67). Conclusions  In HCV genotype 1 patients, IL28B polymorphisms, HCV RNA load and IP-10 independently predict RVR. The combination of IL28B polymorphisms, HCV RNA level and age may yield more accurate pre-treatment prediction of SVR. HOMA-IR score is not associated with viral response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To look for apoptosis pathways involved in corneal endothelial cell death during acute graft rejection and to evaluate the potential role of nitric oxide in this process. MATERIALS AND METHODS: Corneal buttons from Brown-Norway rats were transplanted into Lewis rat corneas. At different time intervals after transplantation, apoptosis was assessed by diamino-2-phenylindol staining and annexin-V binding on flat-mount corneas, and by terminal transferase dUTP nick end labeling (TUNEL), caspase-3 dependent and leukocyte elastase inhibitor (LEI)/LDNase II caspase-independent pathways on sections. Inducible nitric oxide synthase (NOS-II) expression and the presence of nitrotyrosine were assayed by immunohistochemistry. RESULTS: Graft endothelial cells demonstrated nuclear fragmentation and LEI nuclear translocation, annexin-V binding, and membranes bleb formation. Apoptosis associated with caspase-3 activity or TUNEL-positive reaction was not observed at any time either in the graft or in the recipient corneal endothelial cells. During 14 days posttransplantation, the recipient corneal endothelial cells remained unaltered and their number unchanged in all studied corneas. NOS-II was expressed in infiltrating cells present within the graft. This expression was closely associated with the presence of nitrotyrosine in endothelial and infiltrating cells. CONCLUSION: During the time course of corneal graft rejection, graft endothelial cells undergo apoptosis. Apoptosis is caspase 3 independent and TUNEL negative and is, probably, carried out by an alternative pathway driven by an LEI/L-Dnase II. Peroxynitrite formation may be an additional mechanism for cell toxicity and programmed cell death of the graft endothelial cells during the rejection process in this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cytoskeletal changes after longterm exposure to ethanol have been described in a number of cell types in adult rat and humans. These changes can play a key part in the impairment of nutrient assimilation and postnatal growth retardation after prenatal damage of the intestinal epithelium produced by ethanol intake. AIMS: To determine, in the newborn rat, which cytoskeletal proteins are affected by longterm ethanol exposure in utero and to what extent. ANIMALS: The offspring of two experimental groups of female Wistar rats: ethanol treated group receiving up to 25% (w/v) of ethanol in the drinking fluid and control group receiving water as drinking fluid. METHODS: Single and double electron microscopy immunolocalisation and label density estimation of cytoskeletal proteins on sections of proximal small intestine incubated with monoclonal antibodies against actin, alpha-tubulin, cytokeratin (polypeptides 1, 5, 6, 7, 8, 10, 11, and 18), and with a polyclonal antibody anti-beta 1,4-galactosyl transferase as trans golgi (TG) or trans golgi network (TGN) marker, or both. SDS-PAGE technique was also performed on cytoskeletal enriched fractions from small intestine. Western blotting analysis was carried out by incubation with the same antibodies used for immunolocalisation. RESULTS: Intestinal epithelium of newborn rats from the ethanol treated group showed an overexpression of cytoskeletal polypeptides ranging from 39 to 54 kDa, affecting actin and some cytokeratins, but not tubulin. Furthermore, a cytokeratin related polypeptide of 28-29 kDa was identified together with an increase in free ubiquitin in the same group. It was noteworthy that actin and cytokeratin were abnormally located in the TG or the TGN, or both. CONCLUSIONS: Longterm exposure to ethanol in utero causes severe dysfunction in the cytoskeleton of the developing intestinal epithelium. Actin and cytokeratins, which are involved in cytoskeleton anchoring to plasma membrane and cell adhesion, are particularly affected, showing overexpression, impaired proteolysis, and mislocalisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cytoskeletal changes after longterm exposure to ethanol have been described in a number of cell types in adult rat and humans. These changes can play a key part in the impairment of nutrient assimilation and postnatal growth retardation after prenatal damage of the intestinal epithelium produced by ethanol intake. AIMS: To determine, in the newborn rat, which cytoskeletal proteins are affected by longterm ethanol exposure in utero and to what extent. ANIMALS: The offspring of two experimental groups of female Wistar rats: ethanol treated group receiving up to 25% (w/v) of ethanol in the drinking fluid and control group receiving water as drinking fluid. METHODS: Single and double electron microscopy immunolocalisation and label density estimation of cytoskeletal proteins on sections of proximal small intestine incubated with monoclonal antibodies against actin, alpha-tubulin, cytokeratin (polypeptides 1, 5, 6, 7, 8, 10, 11, and 18), and with a polyclonal antibody anti-beta 1,4-galactosyl transferase as trans golgi (TG) or trans golgi network (TGN) marker, or both. SDS-PAGE technique was also performed on cytoskeletal enriched fractions from small intestine. Western blotting analysis was carried out by incubation with the same antibodies used for immunolocalisation. RESULTS: Intestinal epithelium of newborn rats from the ethanol treated group showed an overexpression of cytoskeletal polypeptides ranging from 39 to 54 kDa, affecting actin and some cytokeratins, but not tubulin. Furthermore, a cytokeratin related polypeptide of 28-29 kDa was identified together with an increase in free ubiquitin in the same group. It was noteworthy that actin and cytokeratin were abnormally located in the TG or the TGN, or both. CONCLUSIONS: Longterm exposure to ethanol in utero causes severe dysfunction in the cytoskeleton of the developing intestinal epithelium. Actin and cytokeratins, which are involved in cytoskeleton anchoring to plasma membrane and cell adhesion, are particularly affected, showing overexpression, impaired proteolysis, and mislocalisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FSP27 (CIDEC in humans) is a protein associated with lipid droplets that downregulates the fatty acid oxidation (FAO) rate when it is overexpressed. However, little is known about its physiological role in liver. Here, we show that fasting regulates liver expression of Fsp27 in a time-dependent manner. Thus, during the initial stages of fasting a maximal induction of 800-fold was achieved, while during the later phase of fasting, Fsp27 expression decreased. The early response to fasting can be explained by a canonical PKA-CREB-CRTC2 signaling pathway since: i) CIDEC expression was induced by forskolin, ii) Fsp27 promoter activity was increased by CREB, and iii) Fsp27 expression was upregulated in the liver of Sirt1 knockout animals. Interestingly, pharmacological (etomoxir) or genetic (Hmgcs2 interference) inhibition of the FAO rate increases the in vivo expression of Fsp27 during fasting. Similarly, CIDEC expression was upregulated in HepG2 cells by either etomoxir or HMGCS2 interference. Our data indicate that there is a kinetic mechanism of auto-regulation between short- and long-term fasting, by which free fatty acids delivered to the liver during early fasting are accumulated/exported by FSP27/CIDEC, while over longer periods of fasting they are degraded in the mitochondria through the carnitine palmitoyl transferase (CPT) system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma liver-enzyme tests are widely used in the clinic for the diagnosis of liver diseases and for monitoring the response to drug treatment. There is considerable evidence that human genetic variation influences plasma levels of liver enzymes. However, such genetic variation has not been systematically assessed. In the present study, we performed a genome-wide association study of plasma liver-enzyme levels in three populations (total n = 7715) with replication in three additional cohorts (total n = 4704). We identified two loci influencing plasma levels of alanine-aminotransferase (ALT) (CPN1-ERLIN1-CHUK on chromosome 10 and PNPLA3-SAMM50 on chromosome 22), one locus influencing gamma-glutamyl transferase (GGT) levels (HNF1A on chromosome 12), and three loci for alkaline phosphatase (ALP) levels (ALPL on chromosome 1, GPLD1 on chromosome 6, and JMJD1C-REEP3 on chromosome 10). In addition, we confirmed the associations between the GGT1 locus and GGT levels and between the ABO locus and ALP levels. None of the ALP-associated SNPs were associated with other liver tests, suggesting intestine and/or bone specificity. The mechanisms underlying the associations may involve cis- or trans-transcriptional effects (some of the identified variants were associated with mRNA transcription in human liver or lymphoblastoid cells), dysfunction of the encoded proteins (caused by missense variations at the functional domains), or other unknown pathways. These findings may help in the interpretation of liver-enzyme tests and provide candidate genes for liver diseases of viral, metabolic, autoimmune, or toxic origin. The specific associations with ALP levels may point to genes for bone or intestinal diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. METHODS: Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. FINDINGS: Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. INTERPRETATION: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. FUNDING: EORTC, NCIC, Nélia and Amadeo Barletta Foundation, Schering-Plough.