953 resultados para Time series. Transfer function. Recursive Estimation. Plunger lift. Gas flow.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the cyclical regularities of macroeconomic, financial and property market aggregates in relation to the property stock price cycle in the UK. The Hodrick Prescott filter is employed to fit a long-term trend to the raw data, and to derive the short-term cycles of each series. It is found that the cycles of consumer expenditure, total consumption per capita, the dividend yield and the long-term bond yield are moderately correlated, and mainly coincident, with the property price cycle. There is also evidence that the nominal and real Treasury Bill rates and the interest rate spread lead this cycle by one or two quarters, and therefore that these series can be considered leading indicators of property stock prices. This study recommends that macroeconomic and financial variables can provide useful information to explain and potentially to forecast movements of property-backed stock returns in the UK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many key economic and financial series are bounded either by construction or through policy controls. Conventional unit root tests are potentially unreliable in the presence of bounds, since they tend to over-reject the null hypothesis of a unit root, even asymptotically. So far, very little work has been undertaken to develop unit root tests which can be applied to bounded time series. In this paper we address this gap in the literature by proposing unit root tests which are valid in the presence of bounds. We present new augmented DickeyâFuller type tests as well as new versions of the modified â˜Mâ tests developed by Ng and Perron [Ng, S., Perron, P., 2001. LAG length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519â1554] and demonstrate how these tests, combined with a simulation-based method to retrieve the relevant critical values, make it possible to control size asymptotically. A Monte Carlo study suggests that the proposed tests perform well in finite samples. Moreover, the tests outperform the PhillipsâPerron type tests originally proposed in Cavaliere [Cavaliere, G., 2005. Limited time series with a unit root. Econometric Theory 21, 907â945]. An illustrative application to U.S. interest rate data is provided

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate data are used in a number of applications including climate risk management and adaptation to climate change. However, the availability of climate data, particularly throughout rural Africa, is very limited. Available weather stations are unevenly distributed and mainly located along main roads in cities and towns. This imposes severe limitations to the availability of climate information and services for the rural community where, arguably, these services are needed most. Weather station data also suffer from gaps in the time series. Satellite proxies, particularly satellite rainfall estimate, have been used as alternatives because of their availability even over remote parts of the world. However, satellite rainfall estimates also suffer from a number of critical shortcomings that include heterogeneous time series, short time period of observation, and poor accuracy particularly at higher temporal and spatial resolutions. An attempt is made here to alleviate these problems by combining station measurements with the complete spatial coverage of satellite rainfall estimates. Rain gauge observations are merged with a locally calibrated version of the TAMSAT satellite rainfall estimates to produce over 30-years (1983-todate) of rainfall estimates over Ethiopia at a spatial resolution of 10âkm and a ten-daily time scale. This involves quality control of rain gauge data, generating locally calibrated version of the TAMSAT rainfall estimates, and combining these with rain gauge observations from national station network. The infrared-only satellite rainfall estimates produced using a relatively simple TAMSAT algorithm performed as good as or even better than other satellite rainfall products that use passive microwave inputs and more sophisticated algorithms. There is no substantial difference between the gridded-gauge and combined gauge-satellite products over the test area in Ethiopia having a dense station network; however, the combined product exhibits better quality over parts of the country where stations are sparsely distributed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

African societies are dependent on rainfall for agricultural and other water-dependent activities, yet rainfall is extremely variable in both space and time and reoccurring water shocks, such as drought, can have considerable social and economic impacts. To help improve our knowledge of the rainfall climate, we have constructed a 30-year (1983â2012), temporally consistent rainfall dataset for Africa known as TARCAT (TAMSAT African Rainfall Climatology And Time-series) using archived Meteosat thermal infra-red (TIR) imagery, calibrated against rain gauge records collated from numerous African agencies. TARCAT has been produced at 10-day (dekad) scale at a spatial resolution of 0.0375°. An intercomparison of TARCAT from 1983 to 2010 with six long-term precipitation datasets indicates that TARCAT replicates the spatial and seasonal rainfall patterns and interannual variability well, with correlation coefficients of 0.85 and 0.70 with the Climate Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC) gridded-gauge analyses respectively in the interannual variability of the Africa-wide mean monthly rainfall. The design of the algorithm for drought monitoring leads to TARCAT underestimating the Africa-wide mean annual rainfall on average by âˆ0.37âmmâdayâˆ1 (21%) compared to other datasets. As the TARCAT rainfall estimates are historically calibrated across large climatically homogeneous regions, the data can provide users with robust estimates of climate related risk, even in regions where gauge records are inconsistent in time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical Mode Decomposition is presented as an alternative to traditional analysis methods to decompose geomagnetic time series into spectral components. Important comments on the algorithm and its variations will be given. Using this technique, planetary wave modes of 5-, 10-, and 16-day mean periods can be extracted from magnetic field components of three different stations in Germany. In a second step, the amplitude modulation functions of these wave modes can be shown to contain significant contribution from solar cycle variation through correlation with smoothed sunspot numbers. Additionally, the data indicate connections with geomagnetic jerk occurrences, supported by a second set of data providing reconstructed near-Earth magnetic field for 150 years. Usually attributed to internal dynamo processes within the Earth's outer core, the question of who is impacting whom will be briefly discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arctic is an important region in the study of climate change, but monitoring surface temperatures in this region is challenging, particularly in areas covered by sea ice. Here in situ, satellite and reanalysis data were utilised to investigate whether global warming over recent decades could be better estimated by changing the way the Arctic is treated in calculating global mean temperature. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques. Kriging techniques provided the smallest errors in anomaly estimates. Similar accuracies were found for anomalies estimated from in situ meteorological station SAT records using a kriging technique. Whether additional data sources, which are not currently utilised in temperature anomaly datasets, would improve estimates of Arctic surface air temperature anomalies was investigated within the reanalysis testbed and using in situ data. For the reanalysis study, the additional input anomalies were reanalysis data sampled at certain supplementary data source locations over Arctic land and sea ice areas. For the in situ data study, the additional input anomalies over sea ice were surface temperature anomalies derived from the Advanced Very High Resolution Radiometer satellite instruments. The use of additional data sources, particularly those located in the Arctic Ocean over sea ice or on islands in sparsely observed regions, can lead to substantial improvements in the accuracy of estimated anomalies. Decreases in Root Mean Square Error can be up to 0.2K for Arctic-average anomalies and more than 1K for spatially resolved anomalies. Further improvements in accuracy may be accomplished through the use of other data sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flickering is a phenomenon related to mass accretion observed among many classes of astrophysical objects. In this paper we present a study of flickering emission lines and the continuum of the cataclysmic variable V3885 Sgr. The flickering behavior was first analyzed through statistical analysis and the power spectra of lightcurves. Autocorrelation techniques were then employed to estimate the flickering timescale of flares. A cross-correlation study between the line and its underlying continuum variability is presented. The cross-correlation between the photometric and spectroscopic data is also discussed. Periodograms, calculated using emission-line data, show a behavior that is similar to those obtained from photometric datasets found in the literature, with a plateau at lower frequencies and a power-law at higher frequencies. The power-law index is consistent with stochastic events. The cross-correlation study indicates the presence of a correlation between the variability on Ha and its underlying continuum. Flickering timescales derived from the photometric data were estimated to be 25 min for two lightcurves and 10 min for one of them. The average timescales of the line flickering is 40 min, while for its underlying continuum it drops to 20 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical systems are ideal working-horses for studying oscillatory dynamics. Experimentally obtained time series, however, are usually associated with a spontaneous drift in some uncontrollable parameter that triggers transitions among different oscillatory patterns, despite the fact that all controllable parameters are kept constant. Herein we present an empirical method to stabilize experimental potential time series. The method consists of applying a negative galvanodynamic sweep to compensate the spontaneous drift and was tested for the oscillatory electro-oxidation of methanol on platinum. For a wide range of applied currents, the base system presents spontaneous transitions from quasi-harmonic to mixed mode oscillations. Temporal patterns were stabilized by galvanodynamic sweeps at different rates. The procedure resulted in a considerable increase in the number of oscillatory cycles from 5 to 20 times, depending on the specific temporal pattern. The spontaneous drift has been associated with uncompensated oscillations, in which the coverage of some adsorbed species are not reestablished after one cycle; i.e., there is a net accumulation and/or depletion of adsorbed species during oscillations. We interpreted the rate of the galvanodynamic sweep in terms of the time scales of the poisoning processes that underlies the uncompensated oscillations and thus the spontaneous slow drift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens☠embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work concerns forecasting with vector nonlinear time series models when errorsare correlated. Point forecasts are numerically obtained using bootstrap methods andillustrated by two examples. Evaluation concentrates on studying forecast equality andencompassing. Nonlinear impulse responses are further considered and graphically sum-marized by highest density region. Finally, two macroeconomic data sets are used toillustrate our work. The forecasts from linear or nonlinear model could contribute usefulinformation absent in the forecasts form the other model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of four manuscripts in the area of nonlinear time series econometrics on topics of testing, modeling and forecasting nonlinear common features. The aim of this thesis is to develop new econometric contributions for hypothesis testing and forecasting in these area. Both stationary and nonstationary time series are concerned. A definition of common features is proposed in an appropriate way to each class. Based on the definition, a vector nonlinear time series model with common features is set up for testing for common features. The proposed models are available for forecasting as well after being well specified. The first paper addresses a testing procedure on nonstationary time series. A class of nonlinear cointegration, smooth-transition (ST) cointegration, is examined. The ST cointegration nests the previously developed linear and threshold cointegration. An Ftypetest for examining the ST cointegration is derived when stationary transition variables are imposed rather than nonstationary variables. Later ones drive the test standard, while the former ones make the test nonstandard. This has important implications for empirical work. It is crucial to distinguish between the cases with stationary and nonstationary transition variables so that the correct test can be used. The second and the fourth papers develop testing approaches for stationary time series. In particular, the vector ST autoregressive (VSTAR) model is extended to allow for common nonlinear features (CNFs). These two papers propose a modeling procedure and derive tests for the presence of CNFs. Including model specification using the testing contributions above, the third paper considers forecasting with vector nonlinear time series models and extends the procedures available for univariate nonlinear models. The VSTAR model with CNFs and the ST cointegration model in the previous papers are exemplified in detail,and thereafter illustrated within two corresponding macroeconomic data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After more than forty years studying growth, there are two classes of growth models that have emerged: exogenous and endogenous growth models. Since both try to mimic the same set of long-run stylized facts, they are observationally equivalent in some respects. Our goals in this paper are twofold First, we discuss the time-series properties of growth models in a way that is useful for assessing their fit to the data. Second, we investigate whether these two models successfully conforms to U.S. post-war data. We use cointegration techniques to estimate and test long-run capital elasticities, exogeneity tests to investigate the exogeneity status of TFP, and Granger-causality tests to examine temporal precedence of TFP with respect to infrastructure expenditures. The empirical evidence is robust in confirming the existence of a unity long-run capital elasticity. The analysis of TFP reveals that it is not weakly exogenous in the exogenous growth model Granger-causality test results show unequivocally that there is no evidence that TFP for both models precede infrastructure expenditures not being preceded by it. On the contrary, we find some evidence that infras- tructure investment precedes TFP. Our estimated impact of infrastructure on TFP lay rougbly in the interval (0.19, 0.27).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using national accounts data for the revenue-GDP and expenditure GDP ratios from 1947 to 1992, we examine two central issues in public finance. First, was the path of public debt sustainable during this period? Second, if debt is sustainable, how has the government historically balanced the budget after hocks to either revenues or expenditures? The results show that (i) public deficit is stationary (bounded asymptotic variance), with the budget in Brazil being balanced almost entirely through changes in taxes, regardless of the cause of the initial imbalance. Expenditures are weakly exogenous, but tax revenues are not;(ii) a rational Brazilian consumer can have a behavior consistent with Ricardian Equivalence (iii) seignorage revenues are critical to restore intertemporal budget equilibrium, since, when we exclude them from total revenues, debt is not sustainable in econometric tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While it is recognized that output fuctuations are highly persistent over certain range, less persistent results are also found around very long horizons (Conchrane, 1988), indicating the existence of local or temporary persistency. In this paper, we study time series with local persistency. A test for stationarity against locally persistent alternative is proposed. Asymptotic distributions of the test statistic are provided under both the null and the alternative hypothesis of local persistency. Monte Carlo experiment is conducted to study the power and size of the test. An empirical application reveals that many US real economic variables may exhibit local persistency.