952 resultados para Time Dependent Effects
Resumo:
In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.
Resumo:
IMPORTANCE: There are limited prospective, controlled data evaluating survival in patients receiving early surgery vs medical therapy for prosthetic valve endocarditis (PVE). OBJECTIVE: To determine the in-hospital and 1-year mortality in patients with PVE who undergo valve replacement during index hospitalization compared with patients who receive medical therapy alone, after controlling for survival and treatment selection bias. DESIGN, SETTING, AND PARTICIPANTS: Participants were enrolled between June 2000 and December 2006 in the International Collaboration on Endocarditis-Prospective Cohort Study (ICE-PCS), a prospective, multinational, observational cohort of patients with infective endocarditis. Patients hospitalized with definite right- or left-sided PVE were included in the analysis. We evaluated the effect of treatment assignment on mortality, after adjusting for biases using a Cox proportional hazards model that included inverse probability of treatment weighting and surgery as a time-dependent covariate. The cohort was stratified by probability (propensity) for surgery, and outcomes were compared between the treatment groups within each stratum. INTERVENTIONS: Valve replacement during index hospitalization (early surgery) vs medical therapy. MAIN OUTCOMES AND MEASURES: In-hospital and 1-year mortality. RESULTS: Of the 1025 patients with PVE, 490 patients (47.8%) underwent early surgery and 535 individuals (52.2%) received medical therapy alone. Compared with medical therapy, early surgery was associated with lower in-hospital mortality in the unadjusted analysis and after controlling for treatment selection bias (in-hospital mortality: hazard ratio [HR], 0.44 [95% CI, 0.38-0.52] and lower 1-year mortality: HR, 0.57 [95% CI, 0.49-0.67]). The lower mortality associated with surgery did not persist after adjustment for survivor bias (in-hospital mortality: HR, 0.90 [95% CI, 0.76-1.07] and 1-year mortality: HR, 1.04 [95% CI, 0.89-1.23]). Subgroup analysis indicated a lower in-hospital mortality with early surgery in the highest surgical propensity quintile (21.2% vs 37.5%; P = .03). At 1-year follow-up, the reduced mortality with surgery was observed in the fourth (24.8% vs 42.9%; P = .007) and fifth (27.9% vs 50.0%; P = .007) quintiles of surgical propensity. CONCLUSIONS AND RELEVANCE: Prosthetic valve endocarditis remains associated with a high 1-year mortality rate. After adjustment for differences in clinical characteristics and survival bias, early valve replacement was not associated with lower mortality compared with medical therapy in the overall cohort. Further studies are needed to define the effect and timing of surgery in patients with PVE who have indications for surgery.
Resumo:
Background: Probiotics appear to be beneficial in inflammatory bowel disease, but their mechanism of action is incompletely understood. We investigated whether probiotic-derived sphingomyelinase mediates this beneficial effect. Methodology/Principal Findings: Neutral sphingomyelinase (NSMase) activity was measured in sonicates of the probiotic L.brevis (LB)and S. thermophilus (ST) and the non-probiotic E. coli EC) and E. faecalis (EF). Lamina propria mononuclear cells (LPMC) were obtained from patients with Crohn"s disease (CD) and Ulcerative Colitis (UC), and peripheral blood mononuclear cells (PBMC) from healthy volunteers, analysing LPMC and PBMC apoptosis susceptibility, reactive oxygen species (ROS) generation and JNK activation. In some experiments, sonicates were preincubated with GSH or GW4869, a specific NSMase inhibitor. NSMase activity of LB and ST was 10-fold that of EC and EF sonicates. LB and ST sonicates induced significantly more apoptosis of CD and UC than control LPMC, whereas EC and EF sonicates failed to induce apoptosis. Pre-stimulation with anti-CD3/CD28 induced a significant and time-dependent increase in LB-induced apoptosis of LPMC and PBMC. Exposure to LB sonicates resulted in JNK activation and ROS production by LPMC. NSMase activity of LB sonicates was completely abrogated by GW4869, causing a dose-dependent reduction of LB -induced poptosis. LB and ST selectively induced immune cell apoptosis, an effect dependent on the degree of cell activation and mediated by bacterial NSMase. Conclusions: These results suggest that induction of immune cell apoptosis is a mechanism of action of some probiotics and that NSMase-mediated ceramide generation contributes to the therapeutic effects of probiotics.
Resumo:
The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.
Resumo:
Background: Polyphenols may lower the risk of cardiovascular disease (CVD) and other chronic diseases due to their antioxidant and anti-inflammatory properties, as well as their beneficial effects on blood pressure, lipids and insulin resistance. However, no previous epidemiological studies have evaluated the relationship between the intake of total polyphenols intake and polyphenol subclasses with overall mortality. Our aim was to evaluate whether polyphenol intake is associated with all-cause mortality in subjects at high cardiovascular risk. Methods: We used data from the PREDIMED study, a 7,447-participant, parallel-group, randomized, multicenter, controlled five-year feeding trial aimed at assessing the effects of the Mediterranean Diet in primary prevention of cardiovascular disease. Polyphenol intake was calculated by matching food consumption data from repeated food frequency questionnaires (FFQ) with the Phenol-Explorer database on the polyphenol content of each reported food. Hazard ratios (HR) and 95% confidence intervals (CI) between polyphenol intake and mortality were estimated using time-dependent Cox proportional hazard models. Results: Over an average of 4.8 years of follow-up, we observed 327 deaths. After multivariate adjustment, we found a 37% relative reduction in all-cause mortality comparing the highest versus the lowest quintiles of total polyphenol intake (hazard ratio (HR) = 0.63; 95% CI 0.41 to 0.97; P for trend = 0.12). Among the polyphenol subclasses, stilbenes and lignans were significantly associated with reduced all-cause mortality (HR =0.48; 95% CI 0.25 to 0.91; P for trend = 0.04 and HR = 0.60; 95% CI 0.37 to 0.97; P for trend = 0.03, respectively), with no significant associations apparent in the rest (flavonoids or phenolic acids). Conclusions: Among high-risk subjects, those who reported a high polyphenol intake, especially of stilbenes and lignans, showed a reduced risk of overall mortality compared to those with lower intakes. These results may be useful to determine optimal polyphenol intake or specific food sources of polyphenols that may reduce the risk of all-cause mortality.
Resumo:
ABSTRACT Five experiments were conducted to evaluate the hypothesis that Solanum americanum density and time of coexistence affect the quality of processing tomato fruit. The tomato crop was established using either the direct drilling or the transplanting technique. The factors evaluated consisted of weed density (from 0 up to 6 plants m-2) and time of weed interference (early bloom stage, full flowering stage, fruit filling, and harvest time). The effects of competition on tomato fruit quality were analysed using a multiple model. Tomato variables evaluated included industrial fruit types (which depended on ripeness and disease infection) and soluble solids level(obrix). Tomato fruit quality is dependent on the factors tested. Under low densities (< 6 plants m-2) of S. americanum there was a small impact on the quality of the tomato fruits. The percentage of grade A (mature fruit with red color and without pathogen infection) tomato fruits is the variable most affect by the independent variables. The impact of these independent variables on the percentage of grade C (green and/or with more than 15% disease infection) tomato yield was of smaller magnitude and in an inverse trend as the observed for grade A. The level of soluble solids was influenced by the weed interference on only two experiments, but the impact was of small magnitude. The impact of the results on current and future crop management practices is discussed.
The hyperinsulinemia produced by concanavalin A in rats is opioid-dependent and hormonally regulated
Resumo:
The present study examines the effect of concanavalin A (Con A) on the blood insulin and glucose levels of rats. Male and female rats treated with Con A (62.5-500 µg/kg) for three days showed a dose- and time-dependent hyperinsulinemia that lasted more than 48 h. Male rats were more sensitive to Con A. Thus, 6 h after treatment with Con A the circulating insulin levels in male rats had increased by 85% (control: 10.2 ± 0.9 mU/l and Con A-treated: 18.8 ± 1 mU/l) compared to only 38% (control: 7.5 ± 0.2 mU/l; Con A-treated: 10.3 ± 0.9 mU/l) in females. An identical response was seen after 12 h. Con A (250 µg/kg) produced time-dependent hypoglycemia in both sexes but more pronounced in males. There was no correlation between the hypoglycemia and hyperinsulinemia described above. The Con A-induced hyperinsulinemia in rats of both sexes was abolished in gonadectomized animals (intact males: +101 ± 17% vs orchiectomized males: -5 ± 3%; intact females: +86 ± 23% vs ovariectomized females: -18 ± 7.2%). Pretreating intact male and female rats with human chorionic gonadotropin also significantly inhibited the Con A-induced hyperinsulinemia. Estradiol (10 µg/kg, im) significantly blocked the Con A-induced increase in circulating insulin in male rats (101 ± 17% for controls vs 32 ± 5.3% for estradiol-treated animals, P<0.05) while testosterone (10 mg/kg, im) had no similar effect on intact female rats. Pretreating Con A-injected rats with opioid antagonists such as naloxone (1 mg/kg, sc) and naltrexone (5 mg/kg, sc) blocked the hyperinsulinemia produced by the lectin in males (control: +101 ± 17% vs naloxone-treated: +5 ± 14%, or naltrexone-treated: -23 ± 4.5%) and females (control: +86 ± 23% vs naloxone-treated: +21 ± 20%, or naltrexone-treated: -18 ± 11%). These results demonstrate that Con A increases the levels of circulating insulin in rats and that this response is opioid-dependent and hormonally regulated.
Resumo:
We investigated the effects of aerobic training on the efferent autonomic control of heart rate (HR) during dynamic exercise in middle-aged men, eight of whom underwent exercise training (T) while the other seven continued their sedentary (S) life style. The training was conducted over 10 months (three 1-h sessions/week on a field track at 70-85% of the peak HR). The contribution of sympathetic and parasympathetic exercise tachycardia was determined in terms of differences in the time constant effects on the HR response obtained using a discontinuous protocol (4-min tests at 25, 50, 100 and 125 watts on a cycle ergometer), and a continuous protocol (25 watts/min until exhaustion) allowed the quantification of the parameters (anaerobic threshold, VO2 AT; peak O2 uptake, VO2 peak; power peak) that reflect oxygen transport. The results obtained for the S and the T groups were: 1) a smaller resting HR in T (66 beats/min) when compared to S (84 beats/min); 2) during exercise, a small increase in the fast tachycardia (D0-10 s) related to vagal withdrawal (P<0.05, only at 25 watts) was observed in T at all powers; at middle and higher powers a significant decrease (P<0.05 at 50, 100 and 125 watts) in the slow tachycardia (D1-4 min) related to a sympathetic-dependent mechanism was observed in T; 3) the VO2 AT (S = 1.06 and T = 1.33 l/min) and VO2 peak (S = 1.97 and T = 2.47 l/min) were higher in T (P<0.05). These results demonstrate that aerobic training can induce significant physiological adaptations in middle-aged men, mainly expressed as a decrease in the sympathetic effects on heart rate associated with an increase in oxygen transport during dynamic exercise.
Resumo:
Connexin43 (Cx43) is a major gap junction protein present in the Fischer-344 rat aorta. Previous studies have identified conditions under which selective disruption of intercellular communication with heptanol caused a significant, readily reversible and time-dependent diminution in the magnitude of a1-adrenergic contractions in isolated rat aorta. These observations have indentified a significant role for gap junctions in modulating vascular smooth muscle tone. The goal of these steady-state studies was to utilize isolated rat aortic rings to further evaluate the contribution of intercellular junctions to contractions elicited by cellular activation in response to several other vascular spasmogens. The effects of heptanol were examined (0.2-2.0 mM) on equivalent submaximal (»75% of the phenylephrine maximum) aortic contractions elicited by 5-hydroxytryptamine (5-HT; 1-2 µM), prostaglandin F2a (PGF2a; 1 µM) and endothelin-1 (ET-1; 20 nM). Statistical analysis revealed that 200 µM and 500 µM heptanol diminished the maximal amplitude of the steady-state contractile responses for 5-HT from a control response of 75 ± 6% (N = 26 rings) to 57 ± 7% (N = 26 rings) and 34.9 ± 6% (N = 13 rings), respectively (P<0.05), and for PGF2a from a control response of 75 ± 10% (N = 16 rings) to 52 ± 8% (N = 19 rings) and 25.9 ± 6% (N = 18 rings), respectively (P<0.05). In contrast, 200 µM and 500 µM heptanol had no detectable effect on the magnitude of ET-1-induced contractile responses, which were 76 ± 5.0% for the control response (N = 38 rings), 59 ± 6.0% in the presence of 200 µM heptanol (N = 17 rings), and 70 ± 6.0% in the presence of 500 µM heptanol (N = 23 rings) (P<0.13). Increasing the heptanol concentration to 1 mM was associated with a significant decrease in the magnitude of the steady-state ET-1-induced contractile response to 32 ± 5% (21 rings; P<0.01); further increasing the heptanol concentration to 2 mM had no additional effect. In rat aorta then, junctional modulation of tissue contractility appears to be agonist-dependent.
Resumo:
Angiotensin-converting enzyme (ACE) plays a central role in cardiac remodeling associated with pathological conditions such as myocardial infarction. The existence of different cell types in the heart expressing components of the renin-angiotensin system makes it difficult to evaluate their relative role under physiological and pathological conditions. Since myocytes are the predominant cellular constituent of the heart by mass, in the present study we studied the effects of glucocorticoids on ACE activity using well-defined cultures of neonatal rat cardiac myocytes. Under steady-state conditions, ACE activity was present at very low levels, but after dexamethasone treatment ACE activity increased significantly (100 nmol/l after 24 h) in a time-dependent fashion. These results demonstrate the influence of dexamethasone on ACE activity in rat cardiac myocytes. This is consistent with the idea that ACE activation occurs under stress conditions, such as myocardial infarction, in which glucocorticoid levels may increase approximately 50-fold.
Resumo:
The first minutes of the time course of cardiopulmonary reflex control evoked by lower body negative pressure (LBNP) in patients with hypertensive cardiomyopathy have not been investigated in detail. We studied 15 hypertensive patients with left ventricular dysfunction (LVD) and 15 matched normal controls to observe the time course response of the forearm vascular resistance (FVR) during 3 min of LBNP at -10, -15, and -40 mmHg in unloading the cardiopulmonary receptors. Analysis of the average of 3-min intervals of FVR showed a blunted response of the LVD patients at -10 mmHg (P = 0.03), but a similar response in both groups at -15 and -40 mmHg. However, using a minute-to-minute analysis of the FVR at -15 and -40 mmHg, we observed a similar response in both groups at the 1st min, but a marked decrease of FVR in the LVD group at the 3rd min of LBNP at -15 mmHg (P = 0.017), and -40 mmHg (P = 0.004). Plasma norepinephrine levels were analyzed as another neurohumoral measurement of cardiopulmonary receptor response to LBNP, and showed a blunted response in the LVD group at -10 (P = 0.013), -15 (P = 0.032) and -40 mmHg (P = 0.004). We concluded that the cardiopulmonary reflex response in patients with hypertensive cardiomyopathy is blunted at lower levels of LBNP. However, at higher levels, the cardiopulmonary reflex has a normal initial response that decreases progressively with time. As a consequence of the time-dependent response, the cardiopulmonary reflex response should be measured over small intervals of time in clinical studies.
Resumo:
Quinifuryl (MW 449.52), 2-(5'-nitro-2'-furanyl)ethenyl-4-{N-[4'-(N,N-diethylamino)-1'-methylbutyl]carbamoyl} quinoline, is a water soluble representative of a family of 5-nitrofuran-ethenyl-quinoline drugs which has been shown to be highly toxic to various lines of transformed cells in the dark. In the present study, the toxicity of Quinifuryl to P388 mouse leukemia cells was compared in the dark and under illumination with visible light (390-500 nm). Illumination of water solutions of Quinifuryl (at concentrations ranging from 0.09 to 9.0 µg/ml) in the presence of P388 cells resulted in its photodecomposition and was accompanied by elevated cytotoxicity. A significant capacity to kill P388 cells was detected at a drug concentration as low as 0.09 µg/ml. The toxic effect detected at this drug concentration under illumination exceeded the effect observed in the dark by more than three times. Moreover, the general toxic effect of Quinifuryl, which included cell proliferation arrest, was nearly 100%. Both dose- and time-dependent toxic effects were measured under illumination. The LC50 value of Quinifuryl during incubation with P388 cells was ~0.45 µg/ml under illumination for 60 min and >12 µg/ml in the dark. We have demonstrated that the final products of the Quinifuryl photolysis are not toxic, which means that the short-lived intermediates of Quinifuryl photodecomposition are responsible for the phototoxicity of this compound. The data obtained in the present study are the first to indicate photocytotoxicity of a nitroheterocyclic compound and demonstrate the possibility of its application as a photosensitizer drug for photochemotherapy.
Resumo:
Curcumin, a major yellow pigment and active component of turmeric, has multiple anti-cancer properties. However, its molecular targets and mechanisms of action on human colon adenocarcinoma cells are unknown. In the present study, we examined the effects of curcumin on the proliferation of human colon adenocarcinoma HT-29 cells by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method and confirmed the curcumin-induced apoptosis by morphology and DNA ladder formation. At the same time, p53, phospho-p53 (Ser15), and other apoptosis-related proteins such as Bax, Bcl-2, Bcl-xL, pro-caspase-3, and pro-caspase-9 were determined by Western blot analysis. The colon adenocarcinoma cells were treated with curcumin (0-75 µM) for 0-24 h. We observed that p53 was highly expressed in HT-29 cells and curcumin could up-regulate the serine phosphorylation of p53 in a time- and concentration-dependent manner. An increase in expression of the pro-apoptotic factor Bax and a decrease in expression of the anti-apoptotic factor Bcl-2 were also observed in a time-dependent manner after exposure of 50 µM curcumin, while the expression of the anti-apoptotic factor Bcl-xL was unchanged. Curcumin could also down-regulate the expression of pro-caspase-3 and pro-caspase-9 in a time-dependent manner. These data suggest a possible underlying molecular mechanism whereby curcumin could induce the apoptosis signaling pathway in human HT-29 colon adenocarcinoma cells by p53 activation and by the regulation of apoptosis-related proteins. This property of curcumin suggests that it could have a possible therapeutic potential in colon adenocarcinoma patients.
Resumo:
The visual system is a potential target for methylmercury (MeHg) intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS) activation in modulating MeHg neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM) for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H³]-arginine to L-[H³]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P < 0.05). Maximum values (P < 0.05) were reached after 4 h of MeHg incubation: increases of 81.6 ± 5.3 and 91.3 ± 3.7%, respectively (data are reported as mean ± SEM for 4 replicates). MeHg also promoted a concentration- and time-dependent decrease in cell viability, with the highest toxicity (a reduction of about 80% in cell viability) being observed at the concentration of 1 mM and after 4-6 h of incubation. The present study demonstrates for the first time the modulation of MeHg neurotoxicity in retinal cells by the nitrergic system.
Resumo:
Acrolein is a urinary metabolite of cyclophosphamide and ifosfamide, which has been reported to be the causative agent of hemorrhagic cystitis induced by these compounds. A direct cytotoxic effect of acrolein, however, has not yet been demonstrated. In the present study, the effects of intravesical injection of acrolein and mesna, the classical acrolein chemical inhibitor, were evaluated. Male Swiss mice weighing 25 to 35 g (N = 6 per group) received saline or acrolein (25, 75, 225 µg) intravesically 3, 6, 12, and 24 h before sacrifice for evaluation of bladder wet weight, macroscopic and histopathological changes by Gray's criteria, and 3 and 24 h for assessment of increase in vascular permeability. In other animals, mesna was administered intravesically (2 mg) or systemically (80 mg/kg) 1 h before acrolein. Intravesical administration of acrolein induced a dose- and time-dependent increase in vascular permeability and bladder wet weight (within 3 h: 2.2- and 21-fold increases in bladder wet weight and Evans blue dye exuded, respectively, at doses of 75 µg/bladder), as confirmed by Gray's criteria. Pretreatment with mesna (2-mercaptoethanesulfonic acid), which interacts with acrolein resulting in an inactive compound, inhibited all changes induced by acrolein. Our results are the first demonstration that intravesical administration of acrolein induces hemorrhagic cystitis. This model of acrolein-induced hemorrhagic cystitis in mice may be an important tool for the evaluation of the mechanism by which acrolein induces bladder lesion, as well as for investigation of new uroprotective drugs.