880 resultados para Thermal properties
Resumo:
A series of novel fluorine surfactants, a, b, c, d, e and their acrylates, A, 13, C, D and E, were synthesized via poly( ethylene oxide) ( PEG) ( 200, 600, 1000, 2000, 5000) and perfluorooctane poly (ethylene oxide) ether as the main starting materials. Their chemical structures were characterized by means of FTIR and H-1 NMR. The surface activity and surface tension( y) of surfactants a, b, c, d and e were evaluated by maximum bubble pressure method. Surfactants A, 13, C, D and E were adopted as the grafting monomers of linear low density polyethere( LLDPE), and grafting reaction was carried out by melt reactive extrusion procedure. Their surface properties were characterized with measuring contact angle and XPS. It was found that the hydrophilic property of the graft copolymers was better than the palin LLDPE. Thermal properties of graft copolymers were studied by DSC. It was found that their crystalline temperatures of graft copolymers were faster than that of the plain LLDPE.
Resumo:
Polylactide (PLA) was melt blended with a biodegradable hyperbranched poly(ester amide) (HBP) to enhance its flexibility and toughness without sacrificing comprehensive performance. The advantage of using HBP was due to its unique spherical shape, low melt viscosity, and abundant functional end groups together with its easy access. Rheological measurement showed that blending PLA with as little as 2.5% HBP resulted in a 40% reduction of melt viscosity. The glass transition temperature (T-g) of PLA in the blends decreased slightly with the increase of HBP content, indicating partial miscibility which resulted from intermolecular interactions via H-bonding. The H-bonding involving CO of PLA with OH and NH of HBP was evidenced by FTIR analysis for the first time. The HBP component, as a heterogeneous nucleating agent, accelerated the crystallization rate of PLA. Remarkably, with the increase of HBP content, the elongation at break of PLA blends dramatically increased without severe loss in tensile strength, even the tensile strength increased within 10% content of HBP. The stress-strain curves and the SEM photos of impact-fractured surface showed the material changed from brittle to ductile failure with the addition of HBP. Reasonable interfacial adhesion via H-bonding and finely dispersed particulate structure of HBP in PLA were proposed to be responsible for the improved mechanical properties.
Resumo:
3,3',4,4'-Diphenylthioether dianhydride (4,4'-TDPA), 2,3,3',4'-diphenylthioether dianhydride (3,4'-TDPA), and 2,2',3,3-diphenylthioether dianhydride (3,3'TDPA) were synthesized from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride. A series of polyimides derived from the isomeric diphenylthioether dianhydrides with several diamines were prepared. The properties, such as the solubility, thermal and mechanical behavior, dynamic mechanical behavior, wide-angle X-ray diffraction, and permeability to some gases, were compared among the isomeric polyimides. Both 3,3'-TDPA- and 3,4-TDPA-based polyimides had good solubility in polar aprotic solvents and phenols. The 5% weight loss temperatures of all the obtained polyimides was near 500 degrees C in nitrogen. The glass-transition temperatures decreased according to the order of the polyimides based on 3,3'-TDPA, 3,4'-TDPA, and 4,4'-TDPA. The 3,4'-TDPA-based polyimides had the best permeability and lowest permselectivity, whereas the 4,4'-TDPA-based polyimides had the highest permselectivity and the lowest permeability of the three isomers. Furthermore, the rheological properties of thermoplastic polyimide resins based on the isomeric dipbenylthioether dianhydrides were investigated, and they showed that polyimide 3,4'-TDPA/4,4-oxydianiline had the lowest melt viscosity among the isomers; this indicated that the melt processibility had been greatly improved.
Resumo:
A series of polyimides (PIs) based on 2,3,3',4'-benzophenonetetracarboxylic dianhydride (2,3,3',4'-BTDA) and 3,3',4,4'-BTDA were prepared by the conventional two-step process. The properties of the 2,3,3',4'-BTDA based polyimides were compared with those of polyimides prepared from 3,3',4,4'-BTDA. It was found that PIs from 2,3,3,4'-BTDA have higher glass transition temperature and better solubility without sacrificing their thermal properties. Furthermore the theological properties of PMR-15 type polyimide resins based on 2,3,3',4'-BTDA showed lower melt viscosity and wider melt flow region (flow window) compared with those from 3,3',4,4'-BTDA. The structure-property relations resulted from isomerism were discussed.
Resumo:
2,2',3,3'-Oxydiphthalic dianhydride (2,2',3,3'-ODPA) and 2,3,3',4'-ODPA were synthesized from 3-chlorophthalic anhydride with 2,3-xylenol and 3,4-xylenol, respectively. Their structures were determined via single-crystal X-ray diffraction. A series of polyimides derived from isomeric ODPAs with several diamines were prepared in dimethylacetamide (DMAc) with the conventional two-step method. Matrix-assisted laser desorption/ionization time-of-flight spectra showed that the polymerization of 2,2',3,3'-ODPA with 4,4'-oxydianiline (ODA) has a greater trend to form cyclic oligomers than that of 2,3,3',4'-ODPA. Both 2,2',3,3'-ODPA and 2,3,3',4'-ODPA based polyimides have good solubility in polar aprotic solvents such as DMAc, dimethylformamide, and N-methylpyrrolidone. The 5% weight-loss temperatures of all polyimides were obtained near 500 degreesC in air. Their glass-transition temperatures measured by dynamic mechanical thermal analysis or differential scanning calorimetry decreased according to the order of polyimides on the basis of 2,2',3,3'-ODPA, 2,3,3',4'-ODPA, and 3,3',4,4'-ODPA. The wide-angle X-ray diffraction of all polyimide films from isomeric ODPAs and ODA showed some certain extent of crystallization after stretching. Rheological properties revealed that polyimide (2,3,3',4'-ODPA/ODA) has a comparatively lower melt viscosity than its isomers, which indicated its better melt processability.
Resumo:
The history of solid state electrolyte, the categories, ion transport mechanism, characterization, and the methods to raise the ionic conductivities of polymer electrolytes are reviewed. The further required attentions in the development of polymer electrolytes are discussed in the final part of the review.
Resumo:
A new series of network liquid crystal polymers were synthesized by graft copolymerization of the difunctional mesogenic monomer 4-allyloxy-benzoyloxy-4'-allyloxybiphenyl (M) upon polymethylhydrosiloxane (PMHS). Monomer M acted not only as a mesogenic unit but also as a crosslinker for the network polymers. The chemical structures of the polymers were confirmed by IR spectroscopy. DSC, TGA, and X-ray scattering were used to measure their thermal properties and mesogenic properties. The glass transition temperature (T-g) of these network liquid crystal polymers was increased when the monomer was increased, and T-d (temperature of 5% weight loss) at first went up and reached a maximum at P, then went down. The slightly crosslinked polymers (P, P,) show rubber-like elasticity, so it was called liquid-crystal elastomer. Network polymers will lose elasticity property with a highly crosslinked degree, and turn into thermosetting polymers (P-4, P-5). All polymers exhibited a smectic texture by X-ray scattering.
Resumo:
The miscibility and mechanical properties of the blends of polybutylene terephthalate (PBT) and polypropylene (PP) with a liquid crystalline ionomer (LCI) containing a sulfonate group on the terminal unit as a compatibilizer were assessed. SEM and optical microscopy (POM) were used to examine the morphology of blends of PBT/PP compatibilized by LCI. DSC and TGA were used to discuss the thermal properties of PBT/PP blends with LCI and without LCI. The experimental results revealed that the LCI component affect, to a great extent, the miscibility and crystallization process and mechanical property of PBT/PP blends, The fact is that increasing LCI did improve miscibility of PBT/PP blends and the addition of 1% LCI to the PBT/PP blends increased the ultimate tensile strength and the ultimate elongation.
Resumo:
The structure and thermal properties of polyamide-1010 (PA1010), treated at 250degreesC for 30 min under pressures of 0.7-2.5 GPa, were studied with wide-angle X-ray diffraction (WAXD), infrared (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Crystals were formed when the pressures were less than 1.0 GPa or greater than 1.2 GPa. With increasing pressure, the intensity of the diffraction peak at approximately 24degrees was enhanced, whereas the peak at approximately 20degrees was depressed. The triclinic crystal structure of PA1010 was preserved. The highest melting temperature of the crystals obtained in this work was 208degreesC for PA1010 treated at 1.5 GPa. Crosslinking occurred under pressures of 1.0-1.2 GPa. Only a broad diffraction peak centered at approximately 20degrees was observed on WAXD patterns, and no melting and crystallization peaks were found on DSC curves. IR spectra of crosslinked PA1010 showed a remarkable absorption band at 1370 cm(-1). The N-H stretching vibration band at 3305 cm(-1) was weakened. Crystallized PA1010 had a higher thermal stability than crosslinked PA1010, as indicated on TGA curves by a higher onset temperature of decomposition.
Resumo:
In this paper, the synthesis and crystallization behavior of poly(ether ether ketone ether ketone) (PEEKEK) are reported. PEEKEK was prepared from 4,4'-bis(p-fluorobenzoyl) diphenyl ether (4,4'-FBDE) and hydroquinone along the nucleophilic substitution route. The thermal properties were investigated by using DSC and TGA. The crystallization behavior of PEEKEK under several conditions, i.e., crystallization from the molten state (melt crystallization), crystallization from a quenched sample (cold crystallization) and crystallization induced by exposing glassy sample to methylene chloride (solvent-induced crystallization) has also been investigated. The results show that crystallization of PEEKEK could be induced by the above methods, and no polymorphism was found. The differences in the crystallization of PEEKEK induced by the above methods are seen in their degree of crystallinity.
Resumo:
The present report deals with some results on phase behavior, miscibility and phase separation for several polymer blends casting from solutions. These blends are grouped as the amorphous polymer blends, blends containing a crystalline polymer or two crystalline polymers. The blends of PMMA/PVAc were miscible and underwent phase separation at elevated temperature, exhibited LCST behavior. The benzoylated PPO has both UCST and LCST nature. For the systems composed of crystalline polymer poly(ethylene oxide) and amorphous polyurethane, of two crystalline polymers poly(epsilon-caprolactone) and poly[3,3,-bis-(chloromethyl) oxetane], appear a single T-g, indicating these blends are miscible. The interaction parameter B's were determined to be -14 J cm(-3), -15 J cm(-3) respectively. Phase separation of phenolphthalein poly(ether ether sulfone)/PEO blends were discussed in terms of thermal properties, such as their melting and crystallization behavior.
Resumo:
A series of main-chain Liquid-crystalline ionomers containing sulfonate groups pendant on the polymer backbone were synthesized by an interfacial condensation reaction of 4,4'-dihydroxy-alpha,alpha'-dimethyl benzalazine, a mesogenic monomer, with brilliant yellow (BY), a sulfonate-containing monomer, and a 1/9 mixture of terephthaloyl and sebacoyl dichloride. The structures of the polymers were characterized by LR and UV spectroscopies. DSC and thermogravimetric analysis were used to measure the thermal properties of those polymers, and the mesogenic properties were characterized by a polarized optical microscope, DSC, and wide-angle X-ray diffraction. The ionomers were thermally stable to about 310 degreesC. They were thermotropic liquid-crystalline polymers (LCPs) with high mesomorphic-phase transition temperatures and exhibited broad nematic mesogenic regions of 160-170 degreesC, and they were lyotropic LCPs with willowy leaf-shaped textures in sulfuric acid. However, the thermotropic liquid-crystalline properties were somewhat weakened because the concentration of BY was more than 8%. The inherent viscosity in N-methyl-2-pyrrolidone suggested that intramolecular associations of sulfonate groups occurred at low concentration, and intermolecular associations predominated at higher concentration. (C) 2001 John Wiley & Sons, Inc.
Resumo:
A new kind of monomers including aromatic spirodilactone-5, 5'-carboxy-7,7'-dioxo-2,2'-spirobi(benzo-[c]tetrahydrofuran) is synthesized from m-xylene and paraformaldehyde. It is converted to a series of polyamides and polyesters by means of low-temperature solution polycondensation and interfacial polycondensation. NMR and IR spectra, solubility, mechanical and thermal properties of all these polymers are investigated. The polymers have high glass transition temperatures and good thermal oxidative properties. All polyamides have high viscosity and good solubility in strong polar organic solvents such as DMSO, DMAc, DMF and NMP. All polyamides can be cast into transparent, flexible and tough films possessing good tensile properties.