964 resultados para Telangiectasia, Hereditary Hemorrhagic
Resumo:
Colorectal cancer is the most common cause of death due to malignancy in nonsmokers in the western world. In 1995 there were 1,757 cases of colon cancer in Ireland. Most colon cancer is sporadic, however ten percent of cases occur where there is a previous family history of the disease. In an attempt to understand the tumorigenic pathway in Irish colon cancer patients, a number of genes associated with colorectal cancer development were analysed in Irish sporadic and HNPCC colon cancer patients. The hereditary forms of colon cancer include Familial adenomatous polyposis coli (FAP) and Hereditary Non-Polyposis Colon Cancer (HNPCC). Genetic analysis of the gene responsible for FAP, (the APC gene) has been previously performed on Irish families, however the genetic analysis of HNPCC families is limited. In an attempt to determine the mutation spectrum in Irish HNPCC pedigrees, the hMSH2 and hMLHl mismatch repair genes were screened in 18 Irish HNPCC families. Using SSCP analysis followed by DNA sequencing, five mutations were identified, four novel and a previously reported mutation. In families where a mutation was detected, younger asyptomatic members were screened for the presence of the predisposing mutation (where possible). Detection of mutations is particularly important for the identification of at risk individuals as the early diagnosis of cancer can vastly improve the prognosis. The sensitive and efficient detection of multiple different mutations and polymorphisms in DNA is of prime importance for genetic diagnosis and the identification of disease genes. A novel mutation detection technique has recently been developed in our laboratory. In order to assess the efficacy and application of the methodology in the analysis of cancer associated genes, a protocol for the analysis of the K-ras gene was developed and optimised. Matched normal and tumour DNA from twenty sporadic colon cancer patients was analysed for K-ras mutations using the Glycosylase Mediated Polymorphism Detection technique. Five mutations of the K-ras gene were detected using this technology. Sequencing analysis verified the presence of the mutations and SSCP analysis of the same samples did not identify any additional mutations. The GMPD technology proved to be highly sensitive, accurate and efficient in the identification of K-ras gene mutations. In order to investigate the role of the replication error phenomenon in Irish colon cancer, 3 polyA tract repeat loci were analysed. The repeat loci included a 10 bp intragenic repeat of the TGF-β-RII gene. TGF-β-RII is involved in the TGF-β epithelial cell growth pathway and mutation of the gene is thought to play a role in cell proliferation and tumorigenesis. Due to the presence of a repeat sequence within the gene, TGFB-RII defects are associated with tumours that display the replication error phenomenon. Analysis of the TGF-β-RII 10 bp repeat failed to identify mutations in any colon cancer patients. Analysis of the Bat26 and Bat 40 polyA repeat sequences in the sporadic and HNPCC families revealed that instability is associated with HNPCC tumours harbouring mismatch repair defects and with 20 % of sporadic colon cancer tumours. No correlation between K-ras gene mutations and the RER+ phenotype was detected in sporadic colon cancer tumours.
Resumo:
Hereditary sensory autonomic neuropathy IV (HSAN IV) is an autosomal recessive disorder characterised by inability to feel pain and anhidrosis and is a consequence of defective NGF/TrkA signalling and growth of sensory and sympathetic neurons. Glucocortiocoid-induced tumour necrosis factors receptor (GITR), a transmembrane protein, activated by its specific ligand, GITRL, is well known for its role in the regulation of innate and acquired immune system responses. Recently, GITR was found to be required for NGF-dependant and extracellular signal-related kinase 1/2 (ERK1/2)-induced neurite growth and target innervation in the developing sympathetic nervous system (SNS). Given this novel role of GITR, it is possible that strategies targeting GITR have potential therapeutic benefit in promoting neurite growth in autonomic neuropathies such as HSAN IV. Using P1 mouse SCG neurons as a model, in addition to various SCG cell treatments, knock down models and transfection methods, we investigated whether GITR increases the sensitivity of sympathetic neurons to NGF; the region of GITR required for the enhancement of NGF-promoted growth, the signalling pathways downstream of GITR and how extensively GITR is involved in regulating peripheral innervation of the SNS. Results indicate that the region responsible for the growth promoting effects of GITR lies in its juxtamembrane intracellular region (here termed the growth promoting domain (GPD)) of GITR. The GPD of GITR activates ERK1/2 and inhibits nuclear factor kappa B (NF-κB) in an inverse fashion to provide an optimal cellular growth environment for P1 SCG neurons. While deleting the GPD of GITR had no effect on TrkA expression, constitutive phosphorylation of specific sites in the GPD reduced TrkA expression indicating a possible role for GITR in increasing the sensitivity of SCG neurons to NGF by the regulation of these sites, TrkA expression and subsequent NGF/TrkA binding. GITR appears to be heterogeneously required for NGF-promoted target innervation of SCG neurons in some organs, implying additional factors are involved in extensive NGF-target innervation of the SNS. In conclusion, this study answers basic biological questions regarding the molecular mechanism behind the role of GITR in the development of the SNS, and provides a basis for future research if GITR modulation is to be developed as a strategy for promoting axonal growth.
Resumo:
Since 1968, bone marrow transplantation became the first line therapy for selected metabolic and immunological hereditary disorders. Actually, advances in the supportive care in bone marrow transplantation and a better knowledge of the immunology of BMT complications has been associated with a better disease correction and an increase in long term survival. New approaches are under investigation and include: hematopoietic growth factors, enzymatic replacement and gene therapy. However at the present time BMT is still the only curative treatment for selected hereditary disorders.
Resumo:
BACKGROUND: Stroke is one of the most disabling and costly impairments of adulthood in the United States. Stroke patients clearly benefit from intensive inpatient care, but due to the high cost, there is considerable interest in implementing interventions to reduce hospital lengths of stay. Early discharge rehabilitation programs require coordinated, well-organized home-based rehabilitation, yet lack of sufficient information about the home setting impedes successful rehabilitation. This trial examines a multifaceted telerehabilitation (TR) intervention that uses telehealth technology to simultaneously evaluate the home environment, assess the patient's mobility skills, initiate rehabilitative treatment, prescribe exercises tailored for stroke patients and provide periodic goal oriented reassessment, feedback and encouragement. METHODS: We describe an ongoing Phase II, 2-arm, 3-site randomized controlled trial (RCT) that determines primarily the effect of TR on physical function and secondarily the effect on disability, falls-related self-efficacy, and patient satisfaction. Fifty participants with a diagnosis of ischemic or hemorrhagic stroke will be randomly assigned to one of two groups: (a) TR; or (b) Usual Care. The TR intervention uses a combination of three videotaped visits and five telephone calls, an in-home messaging device, and additional telephonic contact as needed over a 3-month study period, to provide a progressive rehabilitative intervention with a treatment goal of safe functional mobility of the individual within an accessible home environment. Dependent variables will be measured at baseline, 3-, and 6-months and analyzed with a linear mixed-effects model across all time points. DISCUSSION: For patients recovering from stroke, the use of TR to provide home assessments and follow-up training in prescribed equipment has the potential to effectively supplement existing home health services, assist transition to home and increase efficiency. This may be particularly relevant when patients live in remote locations, as is the case for many veterans. TRIAL REGISTRATION: Clinical Trials.gov Identifier: NCT00384748.
Resumo:
Ataxia telangiectasia mutant (ATM) is an S/T-Q-directed kinase that is critical for the cellular response to double-stranded breaks (DSBs) in DNA. Following DNA damage, ATM is activated and recruited by the MRN protein complex [meiotic recombination 11 (Mre11)/DNA repair protein Rad50/Nijmegen breakage syndrome 1 proteins] to sites of DNA damage where ATM phosphorylates multiple substrates to trigger cell-cycle arrest. In cancer cells, this regulation may be faulty, and cell division may proceed even in the presence of damaged DNA. We show here that the ribosomal s6 kinase (Rsk), often elevated in cancers, can suppress DSB-induced ATM activation in both Xenopus egg extracts and human tumor cell lines. In analyzing each step in ATM activation, we have found that Rsk targets loading of MRN complex components onto DNA at DSB sites. Rsk can phosphorylate the Mre11 protein directly at S676 both in vitro and in intact cells and thereby can inhibit the binding of Mre11 to DNA with DSBs. Accordingly, mutation of S676 to Ala can reverse inhibition of the response to DSBs by Rsk. Collectively, these data point to Mre11 as an important locus of Rsk-mediated checkpoint inhibition acting upstream of ATM activation.
Resumo:
To ensure genomic integrity, dividing cells implement multiple checkpoint pathways during the course of the cell cycle. In response to DNA damage, cells may either halt the progression of the cycle (cell cycle arrest) or undergo apoptosis. This choice depends on the extent of damage and the cell's capacity for DNA repair. Cell cycle arrest induced by double-stranded DNA breaks relies on the activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell cycle effectors (e.g., Chk2 and p53) to inhibit cell cycle progression. ATM is an S/T-Q directed kinase that is critical for the cellular response to double-stranded DNA breaks. Following DNA damage, ATM is activated and recruited to sites of DNA damage by the MRN protein complex (Mre11-Rad50-Nbs1 proteins) where ATM phosphorylates multiple substrates to trigger a cell cycle arrest. In cancer cells, this regulation may be faulty and cell division may proceed even in the presence of damaged DNA. We show here that the RSK kinase, often elevated in cancers, can suppress DSB-induced ATM activation in both Xenopus egg extracts and human tumor cell lines. In analyzing each step in ATM activation, we have found that RSK disrupts the binding of the MRN complex to DSB DNA. RSK can directly phosphorylate the Mre11 protein at Ser 676 both in vitro and in intact cells and can thereby inhibit loading of Mre11 onto DSB DNA. Accordingly, mutation of Ser 676 to Ala can reverse inhibition of the DSB response by RSK. Collectively, these data point to Mre11 as an important locus of RSK-mediated checkpoint inhibition acting upstream of ATM activation.
The phosphorylation of Mre11 on Ser 676 is antagonized by phosphatases. Here, we screened for phosphatases that target this site and identified PP5 as a candidate. This finding is consistent with the fact that PP5 is required for the ATM-mediated DNA damage response, indicating that PP5 may promote DSB-induced, ATM-dependent DNA damage response by targeting Mre11 upstream of ATM.
Resumo:
BACKGROUND: Mutations in podocin (NPHS2) are the most common cause of childhood onset autosomal recessive steroid-resistant nephrotic syndrome (SRNS). The disease is characterized by early-onset proteinuria, resistance to immunosuppressive therapy and rapid progression to end-stage renal disease. Compound heterozygous changes involving the podocin variant R229Q combined with another pathogenic mutation have been associated with a mild phenotype with disease onset often in adulthood. METHODS: We screened 19 families with early-onset SRNS for mutations in NPHS2 and WT1 and identified four disease-causing mutations (three in NPHS2 and one in WT1) prior to planned whole-exome sequencing. RESULTS: We describe two families with three individuals presenting in childhood who are compound heterozygous for R229Q and one other pathogenic NPHS2 mutation, either L327F or A297V. One child presented at age 4 years (A297V plus R229Q) and the other two at age 13 (L327F plus R229Q), one with steadily deteriorating renal function. CONCLUSIONS: These cases highlight the phenotypic variability associated with the NPHS2 R229Q variant plus pathogenic mutation. Individuals may present with early aggressive disease.
Resumo:
OBJECTIVE: We tested the hypothesis that intraventricular hemorrhage (IVH) is associated with incontinence and gait disturbance among survivors of intracerebral hemorrhage (ICH) at 3-month follow-ups. METHODS: The Genetic and Environmental Risk Factors for Hemorrhagic Stroke study was used as the discovery set. The Ethnic/Racial Variations of Intracerebral Hemorrhage study served as a replication set. Both studies performed prospective hot-pursuit recruitment of ICH cases with 3-month follow-up. Multivariable logistic regression analyses were computed to identify risk factors for incontinence and gait dysmobility at 3 months after ICH. RESULTS: The study population consisted of 307 ICH cases in the discovery set and 1,374 cases in the replication set. In the discovery set, we found that increasing IVH volume was associated with incontinence (odds ratio [OR] 1.50; 95% confidence interval [CI] 1.10-2.06) and dysmobility (OR 1.58; 95% CI 1.17-2.15) after controlling for ICH location, initial ICH volume, age, baseline modified Rankin Scale score, sex, and admission Glasgow Coma Scale score. In the replication set, increasing IVH volume was also associated with both incontinence (OR 1.42; 95% CI 1.27-1.60) and dysmobility (OR 1.40; 95% CI 1.24-1.57) after controlling for the same variables. CONCLUSION: ICH subjects with IVH extension are at an increased risk for developing incontinence and dysmobility after controlling for factors associated with severity and disability. This finding suggests a potential target to prevent or treat long-term disability after ICH with IVH.
Resumo:
PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.
Resumo:
E-cadherin is involved in the formation of cell-junctions and the maintenance of epithelial integrity. Direct evidence of E-cadherin mutations triggering tumorigenesis has come from the finding of inactivating germline mutations of the gene (CDH1) in hereditary diffuse gastric cancer (HDGC). We screened a series of 66 young gastric cancer probands for germline CDH1 mutations, and two novel missense alterations together with an intronic variant were identified. We then analysed the functional significance of the exonic missense variants found here as well as a third germline missense variant that we previously identified in a HGDC family. cDNAs encoding either the wild-type protein or mutant forms of E-cadherin were stably transfected into CHO (Chinese hamster ovary) E-cadherin-negative cells. Transfected cell-lines were characterized in terms of aggregation, motility and invasion. We show that a proportion of apparently sporadic early-onset diffuse gastric carcinomas are associated with germline alterations of the E-cadherin gene. We also demonstrate that a proportion of missense variants are associated with significant functional consequences, suggesting that our cell model can be used as an adjunct in deciding on the potential pathogenic role of identified E-cadherin germline alterations.
Resumo:
PR homology domain-containing member 12 (PRDM12) is a highly evolutionary conserved member of the Prdm family of transcription factors that play essential roles in many cell fate decisions. In human, PRDM12 coding mutations have been recently identified in several patients with hereditary sensory and autonomic neuropathy (HSAN) (submitted elsewhere). Here we show that PRDM12 is involved in sensory neurogenesis in Xenopus and that several of the human Prdm12 mutants show altered structure, subcellular localization and function. In Drosophila, we demonstrate that the sensory neuron specific RNAi knockdown of the Prdm12 ortholog Hamlet induces impaired nociception and that a similar phenotype is observed in hypomorph hamlet mutants. In human fibroblasts of patients with PRDM12 mutations, we identified additional possible downstream target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE). Knock-down of fly TRHDE in sensory neurons resulted in altered nociceptive neurons and impaired nociception. Collectively, these findings provide the first evidence showing that Prdm12 plays an important role in sensory neuron development. They also suggest that it has a critical evolutionarily conserved role in pain perception via modulation of the TRH signaling pathway.
Resumo:
In 1943, the first description of familial idiopathic methemoglobinemia in the United Kingdom was reported in 2 members of one family. Five years later, Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency. Recessive congenital methemoglobinemia (RCM) is caused by a deficiency of reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase. One of the original propositi with the type 1 disorder has now been traced. He was found to be a compound heterozygote harboring 2 previously undescribed mutations in exon 9, a point mutation Gly873Ala predicting a Gly291Asp substitution, and a 3-bp in-frame deletion of codon 255 (GAG), predicting loss of glutamic acid. A brother and a surviving sister are heterozygous; each bears one of the mutations. Thirty-three different mutations have now been recorded for RCM. The original authors' optimism that RCM would provide material for future genetic studies has been amply justified.
Resumo:
Radiotherapy is an important treatment for patients suffering from high-grade malignant gliomas. Non-targeted (bystander) effects may influence these cells' response to radiation and the investigation of these effects may therefore provide new insights into mechanisms of radiosensitivity and responses to radiotherapy as well as define new targets for therapeutic approaches. Normal primary human astrocytes (NHA) and T98G glioma cells were irradiated with helium ions using the Gray Cancer Institute microbeam facility targeting individual cells. Irradiated NHA and T98G glioma cells generated signals that induced gammaH2AX foci in neighbouring non-targeted bystander cells up to 48 h after irradiation. gammaH2AX bystander foci were also observed in co-cultures targeting either NHA or T98G cells and in medium transfer experiments. Dimethyl sulphoxide, Filipin and anti-transforming growth factor (TGF)-beta 1 could suppress gammaH2AX foci in bystander cells, confirming that reactive oxygen species (ROS) and membrane-mediated signals are involved in the bystander signalling pathways. Also, TGF-beta 1 induced gammaH2AX in an ROS-dependent manner similar to bystander foci. ROS and membrane signalling-dependent differences in bystander foci induction between T98G glioma cells and normal human astrocytes have been observed. Inhibition of ataxia telangiectasia mutated (ATM) protein and DNA-PK could not suppress the induction of bystander gammaH2AX foci whereas the mutation of ATM- and rad3-related (ATR) abrogated bystander foci induction. Furthermore, ATR-dependent bystander foci induction was restricted to S-phase cells. These observations may provide additional therapeutic targets for the exploitation of the bystander effect.
Resumo:
A common feature of the mammalian septin gene family is complex genomic architecture with multiple alternate splice variants. Septin 9 has 18 distinct transcripts encoding 15 polypeptides, with two transcripts (SEPT9_v4 and v4*) encoding the same polypeptide. We have previously reported that the ratio of these distinct transcripts is altered in neoplasia, with the v4 transcript being the usual form in normal cells but v4* becoming predominant in tumours. This led us to ask what the functional differences between these two transcripts might be. The 5'-UTRs of v4 and v4* have distinct 5' ends encoded by exons 1 beta (v4) and 1 zeta and 2 (v4*) and a common 3' region and initiating ATG encoded within exon 3. Here we show that the two mRNAs are translated with different efficiencies and that cellular stress can alter this. A putative internal ribosome entry site can be identified in the common region of the v4 and v4* 5'-UTRs and translation is modulated by an upstream open-reading frame in the unique region of the v4 5'-UTR. Germline mutations in hereditary neuralgic amyotrophy (HNA) map to the region which is common to the two UTRs. These mutations dramatically enhance the translational efficiency of the v4 5'-UTR, leading to elevated SEPT9_v4 protein under hypoxic conditions. Our data provide a mechanistic insight into how the HNA mutations can alter the fine control of SEPT9_v4 protein and its regulation under physiologically relevant conditions and are consistent with the episodic and stress-induced nature of the clinical features of HNA.
Resumo:
Type III galactosaemia is a hereditary disease caused by reduced activity in the Leloir pathway enzyme, UDP-galactose 4'-epimerase (GALE). Traditionally, the condition has been divided into two forms-a mild, or peripheral, form and a severe, or generalized, form. Recently it has become apparent that there are disease states which are intermediate between these two extremes. Three mutations associated with this intermediate form (S81R, T150M and P293L) were analysed for their kinetic and structural properties in vitro and their effects on galactose-sensitivity of Saccharomyces cerevisiae cells that were deleted for the yeast GALE homologue Gal10p. All three mutations result in impairment of the kinetic parameters (principally the turnover number, k(cat)) compared with the wild-type enzyme. However, the degree of impairment was mild compared with that seen with the mutation (V94M) associated with the generalized form of epimerase deficiency galactosaemia. None of the three mutations tested affected the ability of the protein to dimerize in solution or its susceptibility to limited proteolysis in vitro. Finally, in the yeast model, each of the mutated patient alleles was able to complement the galactose-sensitivity of gal10 Delta cells as fully as was the wild-type human allele. Furthermore, there was no difference from control in metabolite profile following galactose exposure for any of these strains. Thus we conclude that the subtle biochemical and metabolic abnormalities detected in patients expressing these GALE alleles likely reflect, at least in part, the reduced enzymatic activity of the encoded GALE proteins.