901 resultados para Techniques of data analysis
Resumo:
Current scientific applications have been producing large amounts of data. The processing, handling and analysis of such data require large-scale computing infrastructures such as clusters and grids. In this area, studies aim at improving the performance of data-intensive applications by optimizing data accesses. In order to achieve this goal, distributed storage systems have been considering techniques of data replication, migration, distribution, and access parallelism. However, the main drawback of those studies is that they do not take into account application behavior to perform data access optimization. This limitation motivated this paper which applies strategies to support the online prediction of application behavior in order to optimize data access operations on distributed systems, without requiring any information on past executions. In order to accomplish such a goal, this approach organizes application behaviors as time series and, then, analyzes and classifies those series according to their properties. By knowing properties, the approach selects modeling techniques to represent series and perform predictions, which are, later on, used to optimize data access operations. This new approach was implemented and evaluated using the OptorSim simulator, sponsored by the LHC-CERN project and widely employed by the scientific community. Experiments confirm this new approach reduces application execution time in about 50 percent, specially when handling large amounts of data.
Resumo:
Background: Aortic aneurysm and dissection are important causes of death in older people. Ruptured aneurysms show catastrophic fatality rates reaching near 80%. Few population-based mortality studies have been published in the world and none in Brazil. The objective of the present study was to use multiple-cause-of-death methodology in the analysis of mortality trends related to aortic aneurysm and dissection in the state of Sao Paulo, between 1985 and 2009. Methods: We analyzed mortality data from the Sao Paulo State Data Analysis System, selecting all death certificates on which aortic aneurysm and dissection were listed as a cause-of-death. The variables sex, age, season of the year, and underlying, associated or total mentions of causes of death were studied using standardized mortality rates, proportions and historical trends. Statistical analyses were performed by chi-square goodness-of-fit and H Kruskal-Wallis tests, and variance analysis. The joinpoint regression model was used to evaluate changes in age-standardized rates trends. A p value less than 0.05 was regarded as significant. Results: Over a 25-year period, there were 42,615 deaths related to aortic aneurysm and dissection, of which 36,088 (84.7%) were identified as underlying cause and 6,527 (15.3%) as an associated cause-of-death. Dissection and ruptured aneurysms were considered as an underlying cause of death in 93% of the deaths. For the entire period, a significant increased trend of age-standardized death rates was observed in men and women, while certain non-significant decreases occurred from 1996/2004 until 2009. Abdominal aortic aneurysms and aortic dissections prevailed among men and aortic dissections and aortic aneurysms of unspecified site among women. In 1985 and 2009 death rates ratios of men to women were respectively 2.86 and 2.19, corresponding to a difference decrease between rates of 23.4%. For aortic dissection, ruptured and non-ruptured aneurysms, the overall mean ages at death were, respectively, 63.2, 68.4 and 71.6 years; while, as the underlying cause, the main associated causes of death were as follows: hemorrhages (in 43.8%/40.5%/13.9%); hypertensive diseases (in 49.2%/22.43%/24.5%) and atherosclerosis (in 14.8%/25.5%/15.3%); and, as associated causes, their principal overall underlying causes of death were diseases of the circulatory (55.7%), and respiratory (13.8%) systems and neoplasms (7.8%). A significant seasonal variation, with highest frequency in winter, occurred in deaths identified as underlying cause for aortic dissection, ruptured and non-ruptured aneurysms. Conclusions: This study introduces the methodology of multiple-causes-of-death to enhance epidemiologic knowledge of aortic aneurysm and dissection in São Paulo, Brazil. The results presented confer light to the importance of mortality statistics and the need for epidemiologic studies to understand unique trends in our own population.
Resumo:
European Regional Development Fund
Resumo:
The world of communication has changed quickly in the last decade resulting in the the rapid increase in the pace of peoples’ lives. This is due to the explosion of mobile communication and the internet which has now reached all levels of society. With such pressure for access to communication there is increased demand for bandwidth. Photonic technology is the right solution for high speed networks that have to supply wide bandwidth to new communication service providers. In particular this Ph.D. dissertation deals with DWDM optical packet-switched networks. The issue introduces a huge quantity of problems from physical layer up to transport layer. Here this subject is tackled from the network level perspective. The long term solution represented by optical packet switching has been fully explored in this years together with the Network Research Group at the department of Electronics, Computer Science and System of the University of Bologna. Some national as well as international projects supported this research like the Network of Excellence (NoE) e-Photon/ONe, funded by the European Commission in the Sixth Framework Programme and INTREPIDO project (End-to-end Traffic Engineering and Protection for IP over DWDM Optical Networks) funded by the Italian Ministry of Education, University and Scientific Research. Optical packet switching for DWDM networks is studied at single node level as well as at network level. In particular the techniques discussed are thought to be implemented for a long-haul transport network that connects local and metropolitan networks around the world. The main issues faced are contention resolution in a asynchronous variable packet length environment, adaptive routing, wavelength conversion and node architecture. Characteristics that a network must assure as quality of service and resilience are also explored at both node and network level. Results are mainly evaluated via simulation and through analysis.
Resumo:
Foods that provide medical and health benefits or have a role in disease risk prevention are termed functional foods. The functionality of functional foods is derived from bioactive compounds that are extranutritional constituents present in small quantities in food. Bioactive components include a range of chemical compounds with varying structures such as carotenoids, flavonoids, plant sterols, omega-3 fatty acids (n-3), allyl and diallyl sulfides, indoles (benzopyrroles), and phenolic acids. The increasing consumer interest in natural bioactive compounds has brought about a rise in demand for these kinds of compounds and, in parallel, an increasing number of scientific studies have this type of substance as main topic. The principal aim of this PhD research project was the study of different bioactive and toxic compounds in several natural matrices. To achieve this goal, chromatographic, spectroscopic and sensorial analysis were performed. This manuscript reports the main results obtained in the six activities briefly summarized as follows: • SECTION I: the influence of conventional packaging on lipid oxidation of pasta was evaluated in egg spaghetti. • SECTION II: the effect of the storage at different temperatures of virgin olive oil was monitored by peroxide value, fatty acid activity, OSI test and sensory analysis. • SECTION III: the glucosinolate and phenolic content of 37 rocket salad accessions were evaluated, comparing Eruca sativa and Diplotaxis tenuifolia species. Sensory analysis and the influence of the phenolic and glucosinolate composition on sensory attributes of rocket salads has been also studied. • SECTION IV: ten buckwheat honeys were characterised on the basis of their pollen, physicochemical, phenolic and volatile composition. • SECTION V: the polyphenolic fraction, anthocyanins and other polar compounds, the antioxidant capacity and the anty-hyperlipemic action of the aqueous extract of Hibiscus sabdariffa were achieved. • SECTION VI: the optimization of a normal phase high pressure liquid chromatography–fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa powder and chocolate samples was performed.
Resumo:
The use of stone and its types of processing have been very important in the vernacular architecture of the cross-border Carso. In Carso this represents an important legacy of centuries and has a uniform typological characteristic to a great extent. The stone was the main constituent of the local architecture, setting and shaping the human environment, incorporating the history of places through their specific symbolic and constructive language. The primary aim of this research is the recognition of the constructive rules and the values embedded in the Carso rural architecture by use and processing of stone. Central to this investigation is the typological reading, aimed to analyze the constructive language expressed by this legacy, through the analysis of the relationship between type, technique and material.
Resumo:
Atmospheric aerosol particles directly impact air quality and participate in controlling the climate system. Organic Aerosol (OA) in general accounts for a large fraction (10–90%) of the global submicron (PM1) particulate mass. Chemometric methods for source identification are used in many disciplines, but methods relying on the analysis of NMR datasets are rarely used in atmospheric sciences. This thesis provides an original application of NMR-based chemometric methods to atmospheric OA source apportionment. The method was tested on chemical composition databases obtained from samples collected at different environments in Europe, hence exploring the impact of a great diversity of natural and anthropogenic sources. We focused on sources of water-soluble OA (WSOA), for which NMR analysis provides substantial advantages compared to alternative methods. Different factor analysis techniques are applied independently to NMR datasets from nine field campaigns of the project EUCAARI and allowed the identification of recurrent source contributions to WSOA in European background troposphere: 1) Marine SOA; 2) Aliphatic amines from ground sources (agricultural activities, etc.); 3) Biomass burning POA; 4) Biogenic SOA from terpene oxidation; 5) “Aged” SOAs, including humic-like substances (HULIS); 6) Other factors possibly including contributions from Primary Biological Aerosol Particles, and products of cooking activities. Biomass burning POA accounted for more than 50% of WSOC in winter months. Aged SOA associated with HULIS was predominant (> 75%) during the spring-summer, suggesting that secondary sources and transboundary transport become more important in spring and summer. Complex aerosol measurements carried out, involving several foreign research groups, provided the opportunity to compare source apportionment results obtained by NMR analysis with those provided by more widespread Aerodyne aerosol mass spectrometers (AMS) techniques that now provided categorization schemes of OA which are becoming a standard for atmospheric chemists. Results emerging from this thesis partly confirm AMS classification and partly challenge it.
Resumo:
The candidate tackled an important issue in contemporary management: the role of CSR and Sustainability. The research proposal focused on a longitudinal and inductive research, directed to specify the evolution of CSR and contribute to the new institutional theory, in particular institutional work framework, and to the relation between institutions and discourse analysis. The documental analysis covers all the evolution of CSR, focusing also on a number of important networks and associations. Some of the methodologies employed in the thesis have been employed as a consequence of data analysis, in a truly inductive research process. The thesis is composed by two section. The first section mainly describes the research process and the analyses results. The candidates employed several research methods: a longitudinal content analysis of documents, a vocabulary research with statistical metrics as cluster analysis and factor analysis, a rhetorical analysis of justifications. The second section puts in relation the analysis results with theoretical frameworks and contributions. The candidate confronted with several frameworks: Actor-Network-Theory, Institutional work and Boundary Work, Institutional Logic. Chapters are focused on different issues: a historical reconstruction of CSR; a reflection about symbolic adoption of recurrent labels; two case studies of Italian networks, in order to confront institutional and boundary works; a theoretical model of institutional change based on contradiction and institutional complexity; the application of the model to CSR and Sustainability, proposing Sustainability as a possible institutional logic.
Resumo:
The objective of this dissertation is to study the structure and behavior of the Atmospheric Boundary Layer (ABL) in stable conditions. This type of boundary layer is not completely well understood yet, although it is very important for many practical uses, from forecast modeling to atmospheric dispersion of pollutants. We analyzed data from the SABLES98 experiment (Stable Atmospheric Boundary Layer Experiment in Spain, 1998), and compared the behaviour of this data using Monin-Obukhov's similarity functions for wind speed and potential temperature. Analyzing the vertical profiles of various variables, in particular the thermal and momentum fluxes, we identified two main contrasting structures describing two different states of the SBL, a traditional and an upside-down boundary layer. We were able to determine the main features of these two states of the boundary layer in terms of vertical profiles of potential temperature and wind speed, turbulent kinetic energy and fluxes, studying the time series and vertical structure of the atmosphere for two separate nights in the dataset, taken as case studies. We also developed an original classification of the SBL, in order to separate the influence of mesoscale phenomena from turbulent behavior, using as parameters the wind speed and the gradient Richardson number. We then compared these two formulations, using the SABLES98 dataset, verifying their validity for different variables (wind speed and potential temperature, and their difference, at different heights) and with different stability parameters (zita or Rg). Despite these two classifications having completely different physical origins, we were able to find some common behavior, in particular under weak stability conditions.
Resumo:
Supernovae are among the most energetic events occurring in the universe and are so far the only verified extrasolar source of neutrinos. As the explosion mechanism is still not well understood, recording a burst of neutrinos from such a stellar explosion would be an important benchmark for particle physics as well as for the core collapse models. The neutrino telescope IceCube is located at the Geographic South Pole and monitors the antarctic glacier for Cherenkov photons. Even though it was conceived for the detection of high energy neutrinos, it is capable of identifying a burst of low energy neutrinos ejected from a supernova in the Milky Way by exploiting the low photomultiplier noise in the antarctic ice and extracting a collective rate increase. A signal Monte Carlo specifically developed for water Cherenkov telescopes is presented. With its help, we will investigate how well IceCube can distinguish between core collapse models and oscillation scenarios. In the second part, nine years of data taken with the IceCube precursor AMANDA will be analyzed. Intensive data cleaning methods will be presented along with a background simulation. From the result, an upper limit on the expected occurrence of supernovae within the Milky Way will be determined.
Resumo:
This thesis is a collection of works focused on the topic of Earthquake Early Warning, with a special attention to large magnitude events. The topic is addressed from different points of view and the structure of the thesis reflects the variety of the aspects which have been analyzed. The first part is dedicated to the giant, 2011 Tohoku-Oki earthquake. The main features of the rupture process are first discussed. The earthquake is then used as a case study to test the feasibility Early Warning methodologies for very large events. Limitations of the standard approaches for large events arise in this chapter. The difficulties are related to the real-time magnitude estimate from the first few seconds of recorded signal. An evolutionary strategy for the real-time magnitude estimate is proposed and applied to the single Tohoku-Oki earthquake. In the second part of the thesis a larger number of earthquakes is analyzed, including small, moderate and large events. Starting from the measurement of two Early Warning parameters, the behavior of small and large earthquakes in the initial portion of recorded signals is investigated. The aim is to understand whether small and large earthquakes can be distinguished from the initial stage of their rupture process. A physical model and a plausible interpretation to justify the observations are proposed. The third part of the thesis is focused on practical, real-time approaches for the rapid identification of the potentially damaged zone during a seismic event. Two different approaches for the rapid prediction of the damage area are proposed and tested. The first one is a threshold-based method which uses traditional seismic data. Then an innovative approach using continuous, GPS data is explored. Both strategies improve the prediction of large scale effects of strong earthquakes.
Resumo:
Coral reefs are the most biodiverse ecosystems of the ocean and they provide notable ecosystem services. Nowadays, they are facing a number of local anthropogenic threats and environmental change is threatening their survivorship on a global scale. Large-scale monitoring is necessary to understand environmental changes and to perform useful conservation measurements. Governmental agencies are often underfunded and are not able of sustain the necessary spatial and temporal large-scale monitoring. To overcome the economic constrains, in some cases scientists can engage volunteers in environmental monitoring. Citizen Science enables the collection and analysis of scientific data at larger spatial and temporal scales than otherwise possible, addressing issues that are otherwise logistically or financially unfeasible. “STE: Scuba Tourism for the Environment” was a volunteer-based Red Sea coral reef biodiversity monitoring program. SCUBA divers and snorkelers were involved in the collection of data for 72 taxa, by completing survey questionnaires after their dives. In my thesis, I evaluated the reliability of the data collected by volunteers, comparing their questionnaires with those completed by professional scientists. Validation trials showed a sufficient level of reliability, indicating that non-specialists performed similarly to conservation volunteer divers on accurate transects. Using the data collected by volunteers, I developed a biodiversity index that revealed spatial trends across surveyed areas. The project results provided important feedbacks to the local authorities on the current health status of Red Sea coral reefs and on the effectiveness of the environmental management. I also analysed the spatial and temporal distribution of each surveyed taxa, identifying abundance trends related with anthropogenic impacts. Finally, I evaluated the effectiveness of the project to increase the environmental education of volunteers and showed that the participation in STEproject significantly increased both the knowledge on coral reef biology and ecology and the awareness of human behavioural impacts on the environment.
Resumo:
Toxicant inputs from agriculture, industry and human settlements have been shown to severely affect freshwater ecosystems. Pollution can lead to changes in population genetic patterns through various genetic and stochastic processes. In my thesis, I investigated the impact of anthropogenic stressors on the population genetics of the zebra mussel Dreissena polymorpha. In order to analyze the genetics of zebra mussel populations, I isolated five new highly polymorphic microsatellite loci. Out of those and other already existing microsatellite markers for this species, I established a robust marker set of six microsatellite loci for D. polymorpha. rnMonitoring the biogeographical background is an important requirement when integrating population genetic measures into ecotoxicological studies. I analyzed the biogeographical background of eleven populations in a section of the River Danube (in Hungary and Croatia) and some of its tributaries, and another population in the River Rhine as genetic outgroup. Moreover, I measured abiotic water parameters at the sampling sites and analyzed if they were correlated with the genetic parameters of the populations. The genetic differentiation was basically consistent with the overall biogeographical history of the populations in the study region. However, the genetic diversity of the populations was not influenced by the geographical distance between the populations, but by the environmental factors oxygen and temperature and also by other unidentified factors. I found strong evidence that genetic adaptation of zebra mussel populations to local habitat conditions had influenced the genetic constitution of the populations. Moreover, by establishing the biogeographical baseline of molecular variance in the study area, I laid the foundation for interpreting population genetic results in ecotoxicological experiments in this region.rnIn a cooperation project with the Department of Zoology of the University of Zagreb, I elaborated an integrated approach in biomonitoring with D. polymorpha by combining the analysis techniques of microsatellite analysis, Comet assay and micronucleus test (MNT). This approach was applied in a case study on freshwater contamination by an effluent of a wastewater treatment plant (WWTP) in the River Drava (Croatia) and a complementary laboratory experiment. I assessed and compared the genetic status of two zebra mussel populations from a contaminated and a reference site. Microsatellite analysis suggested that the contaminated population had undergone a genetic bottleneck, caused by random genetic drift and selection, whereas a bottleneck was not detected in the reference population. The Comet assay did not indicate any difference in DNA damage between the two populations, but MNT revealed that the contaminated population had an increased percentage of micronuclei in hemocytes in comparison to the reference population. The laboratory experiment with mussels exposed to municipal wastewater revealed that mussels from the contaminated site had a lower percentage of tail DNA and a higher percentage of micronuclei than the reference population. These differences between populations were probably caused by an overall decreased fitness of mussels from the contaminated site due to genetic drift and by an enhanced DNA repair mechanism due to adaptation to pollution in the source habitat. Overall, the combination of the three biomarkers provided sufficient information on the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization.rnIn my thesis, I could show that the newly established marker set of six microsatellite loci provided reliable and informative data for population genetic analyses of D. polymorpha. The adaptation of the analyzed zebra mussel populations to the local conditions of their habitat had a strong influence on their genetic constitution. We found evidence that the different genetic constitutions of two populations had influenced the outcome of our ecotoxicological experiment. Overall, the integrated approach in biomonitoring gave comprehensive information about the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization and was well practicable in a first case study.
Resumo:
Over the time, Twitter has become a fundamental source of information for news. As a one step forward, researchers have tried to analyse if the tweets contain predictive power. In the past, in financial field, a lot of research has been done to propose a function which takes as input all the tweets for a particular stock or index s, analyse them and predict the stock or index price of s. In this work, we take an alternative approach: using the stock price and tweet information, we investigate following questions. 1. Is there any relation between the amount of tweets being generated and the stocks being exchanged? 2. Is there any relation between the sentiment of the tweets and stock prices? 3. What is the structure of the graph that describes the relationships between users?
Resumo:
The present work studies a km-scale data assimilation scheme based on a LETKF developed for the COSMO model. The aim is to evaluate the impact of the assimilation of two different types of data: temperature, humidity, pressure and wind data from conventional networks (SYNOP, TEMP, AIREP reports) and 3d reflectivity from radar volume. A 3-hourly continuous assimilation cycle has been implemented over an Italian domain, based on a 20 member ensemble, with boundary conditions provided from ECMWF ENS. Three different experiments have been run for evaluating the performance of the assimilation on one week in October 2014 during which Genova flood and Parma flood took place: a control run of the data assimilation cycle with assimilation of data from conventional networks only, a second run in which the SPPT scheme is activated into the COSMO model, a third run in which also reflectivity volumes from meteorological radar are assimilated. Objective evaluation of the experiments has been carried out both on case studies and on the entire week: check of the analysis increments, computing the Desroziers statistics for SYNOP, TEMP, AIREP and RADAR, over the Italian domain, verification of the analyses against data not assimilated (temperature at the lowest model level objectively verified against SYNOP data), and objective verification of the deterministic forecasts initialised with the KENDA analyses for each of the three experiments.