943 resultados para Taquicardia ventricular : Ultrasonografia
Resumo:
A 20-month old girl with severe pulmonary hypertension and cardiomegaly was admitted to the paediatric intensive care unit with right ventricular failure of unknown origin. Only after decompression of the heart chambers under extracorporeal membrane oxygenation (ECMO), did the pathognomonic membrane of Cor triatriatum become visible on echocardiography. The patient underwent successful surgical correction and subsequently cardiac function recovered completely. Cor triatriatum remains a rare congenital cardiac disorder with a variable presentation, often including recurrent respiratory infections before right-sided heart failure occurs. This case illustrates that ECMO can serve not only as a bridge to diagnosis, but can also facilitate correct diagnosis. Given the excellent outcome after surgical treatment, it is crucial that cardiologists rule out the possibility of cor triatriatum when assessing a child with unexplained pulmonary hypertension.
Resumo:
The aim of this study was to evaluate whether a change of left ventricular ejection fraction (LVEF) depending on percentage of right ventricular pacing is found in a real-life setting of a pacemaker clinic.
Resumo:
Profound evidence substantiates significantly reduced risk of catheter-related infections with prophylactic use of rifampin- and clindamycin-impregnated silicone catheters (Bactiseal(®), Codman Johnson & Johnson, Raynham, MA, USA) for external ventricular drainage (EVD). However, whether Bactiseal(®)-EVD (B-EVD) influences the treatment of EVD-related ventriculitis remains controversial.
Resumo:
BACKGROUND: Clustering ventricular arrhythmias are the consequence of acute ventricular electrical instability and represent a challenge in the management of the growing number of patients with an implantable cardioverter-defibrillator (ICD). Triggering factors can rarely be identified. OBJECTIVES: Several studies have revealed seasonal variations in the frequency of cardiovascular events and life-threatening arrhythmias, and we sought to establish whether seasonal factors may exacerbate ventricular electrical instability leading to arrhythmia clusters and electrical storm. METHODS: Two hundred and fourteen consecutive defibrillator recipients were followed-up during 3.3 +/- 2.2 years. Arrhythmia cluster was defined as the occurrence of three or more arrhythmic events triggering appropriate defibrillator therapies within 2 weeks. Time intervals between two clusters were calculated for each month and each season, and were compared using Kruskal-Wallis test and Wilcoxon-Mann-Whitney test with Bonferroni adjustment. RESULTS: During a follow-up of 698 patient years, 98 arrhythmia clusters were observed in 51 patients; clustering ventricular arrhythmias were associated with temporal variables; they occurred more frequently in the winter and spring months than during the summer and fall. Accordingly, the time intervals between two clusters were significantly shorter during winter and spring (median and 95% CI): winter 16 (5-19), spring 11.5 (7-25), summer 34.5 (15-55), fall 50.5 (19-65), P = 0.0041. CONCLUSION: There are important seasonal variations in the incidence of arrhythmia clusters in ICD recipients. Whether these variations are related to environmental factors, change in physical activity, or psychological factors requires further study.
Resumo:
A 58-year-old male patient presented episodes of palpitations in the context of atrioventricular block treated by a dual-chamber pacemaker. Clinical and electrophysiological studies identified the tachyarrhythmia to be bundle branch re-entrant ventricular tachycardia, which was successfully treated by radiofrequency ablation of the proximal right bundle branch.
Resumo:
In cardiac muscle the amplitude of Ca(2+) transients can be increased by enhancing Ca(2+) influx. Among the processes leading to increased Ca(2+) influx, agonists of the L-type Ca(2+)-channel can play an important role. Known pharmacological Ca(2+)-channel agonists act on different binding sites on the channel protein, which may lead not only to enhanced peak currents, but also to distinct changes in other biophysical characteristics of the current. In this study, membrane currents were recorded with the patch-clamp technique in the whole-cell configuration in guinea pig isolated ventricular myocytes in combination with confocal fluorescence Ca(2+) imaging techniques and a variety of pharmacological tools. Testing a new positive inotropic steroid-like compound, we found that it increased the L-type Ca(2+)-current by 2.5-fold by shifting the voltage-dependence of activation by 20.2 mV towards negative potentials. The dose-response relationship revealed two vastly different affinities (EC(50(high-affinity))=4.5+/-1.7 nM, EC(50(low-affinity))=8.0+/-1.1 microM) exhibiting differential pharmacological interactions with three classes of Ca(2+)-current antagonists, suggesting more than one binding site on the channel protein. Therefore, we identified and characterized a novel positive inotropic compound (F90927) as a member of a new class of Ca(2+)-channel agonists exhibiting unique features, which set it apart from other presently known L-type Ca(2+)-channel agonists.
Resumo:
The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.
Resumo:
OBJECTIVE: Brugada syndrome (BS) is an inherited electrical cardiac disorder characterized by right bundle branch block pattern and ST segment elevation in leads V1 to V3 on surface electrocardiogram that can potentially lead to malignant ventricular tachycardia and sudden cardiac death. About 20% of patients have mutations in the only so far identified gene, SCN5A, which encodes the alpha-subunit of the human cardiac voltage-dependent sodium channel (hNa(v)1.5). Fever has been shown to unmask or trigger the BS phenotype, but the associated molecular and the biophysical mechanisms are still poorly understood. We report on the identification and biophysical characterization of a novel heterozygous missense mutation in SCN5A, F1344S, in a 42-year-old male patient showing the BS phenotype leading to ventricular fibrillation during fever. METHODS: The mutation was reproduced in vitro using site-directed mutagenesis and characterized using the patch clamp technique in the whole-cell configuration. RESULTS: The biophysical characterization of the channels carrying the F1344S mutation revealed a 10 mV mid-point shift of the G/V curve toward more positive voltages during activation. Raising the temperature to 40.5 degrees C further shifted the mid-point activation by 18 mV and significantly changed the slope factor in Na(v)1.5/F1344S mutant channels from -6.49 to -10.27 mV. CONCLUSIONS: Our findings indicate for the first time that the shift in activation and change in the slope factor at a higher temperature mimicking fever could reduce sodium currents' amplitude and trigger the manifestation of the BS phenotype.
Resumo:
Left ventricular free-wall perforation can complicate catheter-based diagnostic or interventional procedures and may require immediate needle pericardiocentesis followed by surgical repair in about 20% of the cases. We describe the transcatheter closure of a left ventricular free-wall perforation as an option in the event of maintained access to the perforation site after defect creation.
Resumo:
AIMS: The goal of this study was to assess the prevalence of left ventricular (LV) hypertrophy in patients with aortic stenosis late (>6 months) after aortic valve replacement and its impact on cardiac-related morbidity and mortality. METHODS AND RESULTS: In a single tertiary centre, echocardiographic data of LV muscle mass were collected. Detailed information of medical history and angiographic data were gathered. Ninety-nine of 213 patients (46%) had LV hypertrophy late (mean 5.8 +/- 5.4 years) after aortic valve replacement. LV hypertrophy was associated with impaired exercise capacity, higher New York Heart Association dyspnoea class, a tendency for more frequent chest pain expressed as higher Canadian Cardiovascular Society class, and more rehospitalizations. 24% of patients with normal LV mass vs. 39% of patients with LV hypertrophy reported cardiac-related morbidity (p = 0.04). In a multivariate logistic regression model, LV hypertrophy was an independent predictor of cardiac-related morbidity (odds ratio 2.31, 95% CI 1.08 to 5.41), after correction for gender, baseline ejection fraction, and coronary artery disease and its risk factors. Thirty seven deaths occurred during a total of 1959 patient years of follow-up (mean follow-up 9.6 years). Age at aortic valve replacement (hazard ratio 1.85, 95% CI 1.39 to 2.47, for every 5 years increase in age), coexisting coronary artery disease at the time of surgery (hazard ratio 3.36, 95% CI 1.31 to 8.62), and smoking (hazard ratio 4.82, 95% CI 1.72 to 13.45) were independent predictors of overall mortality late after surgery, but not LV hypertrophy. CONCLUSIONS: In patients with aortic valve replacement for isolated aortic stenosis, LV hypertrophy late after surgery is associated with increased morbidity.
Resumo:
The vitamin D(3) and nicotine (VDN) model is one of isolated systolic hypertension (ISH) in which arterial calcification raises arterial stiffness and vascular impedance. The effects of VDN treatment on arterial and cardiac hemodynamics have been investigated; however, a complete analysis of ventricular-arterial interaction is lacking. Wistar rats were treated with VDN (VDN group, n = 9), and a control group (n = 10) was included without the VDN. At week 8, invasive indexes of cardiac function were obtained using a conductance catheter. Simultaneously, aortic pressure and flow were measured to derive vascular impedance and characterize ventricular-vascular interaction. VDN caused significant increases in systolic (138 +/- 6 vs. 116 +/- 13 mmHg, P < 0.01) and pulse (42 +/- 10 vs. 26 +/- 4 mmHg, P < 0.01) pressures with respect to control. Total arterial compliance decreased (0.12 +/- 0.08 vs. 0.21 +/- 0.04 ml/mmHg in control, P < 0.05), and pulse wave velocity increased significantly (8.8 +/- 2.5 vs. 5.1 +/- 2.0 m/s in control, P < 0.05). The arterial elastance and end-systolic elastance rose significantly in the VDN group (P < 0.05). Wave reflection was augmented in the VDN group, as reflected by the increase in the wave reflection coefficient (0.63 +/- 0.06 vs. 0.52 +/- 0.05 in control, P < 0.05) and the amplitude of the reflected pressure wave (13.3 +/- 3.1 vs. 8.4 +/- 1.0 mmHg in control, P < 0.05). We studied ventricular-arterial coupling in a VDN-induced rat model of reduced arterial compliance. The VDN treatment led to development of ISH and provoked alterations in cardiac function, arterial impedance, arterial function, and ventricular-arterial interaction, which in many aspects are similar to effects of an aged and stiffened arterial tree.
Resumo:
OBJECTIVE: To review the accuracy of electrocardiography in screening for left ventricular hypertrophy in patients with hypertension. DESIGN: Systematic review of studies of test accuracy of six electrocardiographic indexes: the Sokolow-Lyon index, Cornell voltage index, Cornell product index, Gubner index, and Romhilt-Estes scores with thresholds for a positive test of > or =4 points or > or =5 points. DATA SOURCES: Electronic databases ((Pre-)Medline, Embase), reference lists of relevant studies and previous reviews, and experts. STUDY SELECTION: Two reviewers scrutinised abstracts and examined potentially eligible studies. Studies comparing the electrocardiographic index with echocardiography in hypertensive patients and reporting sufficient data were included. DATA EXTRACTION: Data on study populations, echocardiographic criteria, and methodological quality of studies were extracted. DATA SYNTHESIS: Negative likelihood ratios, which indicate to what extent the posterior odds of left ventricular hypertrophy is reduced by a negative test, were calculated. RESULTS: 21 studies and data on 5608 patients were analysed. The median prevalence of left ventricular hypertrophy was 33% (interquartile range 23-41%) in primary care settings (10 studies) and 65% (37-81%) in secondary care settings (11 studies). The median negative likelihood ratio was similar across electrocardiographic indexes, ranging from 0.85 (range 0.34-1.03) for the Romhilt-Estes score (with threshold > or =4 points) to 0.91 (0.70-1.01) for the Gubner index. Using the Romhilt-Estes score in primary care, a negative electrocardiogram result would reduce the typical pre-test probability from 33% to 31%. In secondary care the typical pre-test probability of 65% would be reduced to 63%. CONCLUSION: Electrocardiographic criteria should not be used to rule out left ventricular hypertrophy in patients with hypertension.
Resumo:
Previous studies have shown that the gating kinetics of the slow component of the delayed rectifier K(+) current (I(Ks)) contribute to postrepolarization refractoriness in isolated cardiomyocytes. However, the impact of such kinetics on arrhythmogenesis remains unknown. We surmised that expression of I(Ks) in rat cardiomyocyte monolayers contributes to wavebreak formation and facilitates fibrillatory conduction by promoting postrepolarization refractoriness. Optical mapping was performed in 44 rat ventricular myocyte monolayers infected with an adenovirus carrying the genomic sequences of KvLQT1 and minK (molecular correlates of I(Ks)) and 41 littermate controls infected with a GFP adenovirus. Repetitive bipolar stimulation was applied at increasing frequencies, starting at 1 Hz until loss of 1:1 capture or initiation of reentry. Action potential duration (APD) was significantly shorter in I(Ks)-infected monolayers than in controls at 1 to 3 Hz (P<0.05), whereas differences at higher pacing frequencies did not reach statistical significance. Stable rotors occurred in both groups, with significantly higher rotation frequencies, lower conduction velocities, and shorter action potentials in the I(Ks) group. Wavelengths in the latter were significantly shorter than in controls at all rotation frequencies. Wavebreaks leading to fibrillatory conduction occurred in 45% of the I(Ks) reentry episodes but in none of the controls. Moreover, the density of wavebreaks increased with time as long as a stable source sustained the fibrillatory activity. These results provide the first demonstration that I(Ks)-mediated postrepolarization refractoriness can promote wavebreak formation and fibrillatory conduction during pacing and sustained reentry and may have important implications in tachyarrhythmias.