916 resultados para TYROSINE KINASE INHIBITORS
Resumo:
Several different acquired resistance mechanisms of EGFR mutant lung adenocarcinoma to EGFR-tyrosine kinase inhibitor (TKI) therapy have been described, most recently transformation to small cell lung carcinoma (SCLC). We describe the case of a 46-year-old female with relapsed EGFR exon 19 deletion lung adenocarcinoma treated with erlotinib, and on resistance, cisplatin-pemetrexed. Liver rebiopsy identified an afatinib-resistant combined SCLC and non-small cell carcinoma with neuroendocrine morphology, retaining the EGFR exon 19 deletion. This case highlights acquired EGFR-TKI resistance through transformation to the high-grade neuroendocrine carcinoma spectrum and that that such transformation may not be evident at time of progression on TKI therapy.
Resumo:
Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD(+) acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD(+) human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD(+) allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD(+) patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.
Resumo:
INTRODUCTION: The presence of ROS proto-oncogene 1, receptor tyrosine kinase gene (ROS1) rearrangements in lung cancers confers sensitivity to ROS kinase inhibitors, including crizotinib. However, they are rare abnormalities (in ∼1% of non-small cell lung carcinomas) that are typically identified by fluorescence in situ hybridization (FISH), and so screening using immunohistochemical (IHC) staining would be both cost- and time-efficient.
METHODS: A cohort of lung tumors negative for other common mutations related to targeted therapies were screened to assess the sensitivity and specificity of IHC staining in detecting ROS1 gene rearrangements, enriched by four other cases first identified by FISH. A review of published data was also undertaken.
RESULTS: IHC staining was 100% sensitive (95% confidence interval: 48-100) and 83% specific (95% confidence interval: 86-100) overall when an h-score higher than 100 was used. Patients with ROS1 gene rearrangements were younger and typically never-smokers, with the tumors all being adenocarcinomas with higher-grade architectural features and focal signet ring morphologic features (two of five). Four patients treated with crizotinib showed a partial response, with three also showing a partial response to pemetrexed. Three of four patients remain alive at 13, 27, and 31 months, respectively.
CONCLUSION: IHC staining can be used to screen for ROS1 gene rearrangements, with patients herein showing a response to crizotinib. Patients with tumors that test positive according to IHC staining but negative according to FISH were also identified, which may have implications for treatment selection.
Resumo:
Nuclear erythroid related factor-2 (NRF2) is known to promote cancer therapeutic detoxification and crosstalk with growth promoting pathways. HER2 receptor tyrosine kinase is frequently overexpressed in cancers leading to uncontrolled receptor activation and signaling. A combination of HER2 targeting monoclonal antibodies shows greater anticancer efficacy than the single targeting antibodies, however, its mechanism of action is largely unclear. Here we report novel actions of anti-HER2 drugs, Trastuzumab and Pertuzumab, involving NRF2. HER2 targeting by antibodies inhibited growth in association with persistent generation of reactive oxygen species (ROS), glutathione (GSH) depletion, reduction in NRF2 levels and inhibition of NRF2 function in ovarian cancer cell lines. The combination of antibodies produced more potent effects than single alone; downregulated NRF2 substrates by repressing the Antioxidant Response (AR) pathway with concomitant transcriptional inhibition of NRF2. We showed the antibody combination produced increased methylation at the NRF2 promoter consistent with repression of NRF2 antioxidant function, as HDAC and methylation inhibitors reversed such produced transcriptional effects. These findings demonstrate a novel mechanism and role for NRF2 in mediating the response of cancer cells to the combination of Trastuzumab and Pertuzumab and reinforce the importance of NRF2 in drug resistance and as a key anticancer target.
Resumo:
The Picornaviridae family consists of positive-strand RNA viruses that are the causative agents of a variety of diseases in humans and animals. Few drugs targeting picornaviruses are available, making the discovery of new antivirals a high priority. Here, we identified and characterized three compounds from a library of kinase inhibitors that block replication of poliovirus, coxsackievirus B3, and encephalomyocarditis virus. The antiviral effect of these compounds is not likely related to their known cellular targets because other inhibitors targeting the same pathways did not inhibit viral replication. Using an in vitro translation-replication system, we showed that these drugs inhibit different stages of the poliovirus life cycle. A4(1) inhibited the formation of a functional replication complex, while E5(1) and E7(2) affected replication after the replication complex had formed. A4(1) demonstrated partial protection from paralysis in a murine model of poliomyelitis. Poliovirus resistant to E7(2) had a single mutation in the 3A protein. This mutation was previously found to confer resistance to enviroxime-like compounds, which target either PI4KIIIβ (major enviroxime-like compounds) or OSBP (minor enviroxime-like compounds), cellular factors involved in lipid metabolism and shown to be important for replication of diverse positive-strand RNA viruses. We classified E7(2) as a minor enviroxime-like compound, because the localization of OSBP changed in the presence of this inhibitor. Interestingly, both E7(2) and major enviroxime-like compound GW5074 interfered with the viral polyprotein processing. Multiple attempts to isolate resistant mutants in the presence of A4(1) or E5(1) were unsuccessful, showing that effective broad-spectrum antivirals could be developed on the basis of these compounds. Studies with these compounds shed light on pathways shared by diverse picornaviruses that could be potential targets for the development of broad-spectrum antiviral drugs.
Resumo:
Background: Rheumatoid arthritis (RA) is a chronic inflammatory arthritis that causes significant morbidity and mortality and has no cure. Although early treatment strategies and biologic therapies such as TNFα blocking antibodies have revolutionised treatment, there still remains considerable unmet need. JAK kinase inhibitors, which target multiple inflammatory cytokines, have shown efficacy in treating RA although their exact mechanism of action remains to be determined. Stratified medicine promises to deliver the right drug to the right patient at the right time by using predictive ‘omic biomarkers discovered using bioinformatic and “Big Data” techniques. Therefore, knowledge across the realms of clinical rheumatology, applied immunology, bioinformatics and data science is required to realise this goal. Aim: To use bioinformatic tools to analyse the transcriptome of CD14 macrophages derived from patients with inflammatory arthritis and define a JAK/STAT signature. Thereafter to investigate the role of JAK inhibition on inflammatory cytokine production in a macrophage cell contact activation assay. Finally, to investigate JAK inhibition, following RA synovial fluid stimulation of monocytes. Methods and Results: Using bioinformatic software such as limma from the Bioconductor repository, I determined that there was a JAK/STAT signature in synovial CD14 macrophages from patients with RA and this differed from psoriatic arthritis samples. JAK inhibition using a JAK1/3 inhibitor tofacitinib reduced TNFα production when macrophages were cell contact activated by cytokine stimulated CD4 T-cells. Other pro-inflammatory cytokines such as IL-6 and chemokines such as IP-10 were also reduced. RA synovial fluid failed to stimulate monocytes to phosphorylate STAT1, 3 or 6 but CD4 T-cells activated STAT3 with this stimulus. RNA sequencing of synovial fluid stimulated CD4 T-cells showed an upregulation of SOCS3, BCL6 and SBNO2, a gene associated with RA but with unknown function and tofacitinib reversed this. Conclusion: These studies demonstrate that tofacitinib is effective at reducing inflammatory mediator production in a macrophage cell contact assay and also affects soluble factor mediated stimulation of CD4 T-cells. This suggests that the effectiveness of JAK inhibition is due to inhibition of multiple cytokine pathways such as IL-6, IL-15 and interferon. RNA sequencing is a useful tool to identify non-coding RNA transcripts that are associated with synovial fluid stimulation and JAK inhibition but these require further validation. SBNO2, a gene that is associated with RA, may be biomarker of tofacitinib treatment but requires further investigation and validation in wider disease cohorts.
Resumo:
Angiotensin II (Ang II) and platelet-derived growth factor-BB (PDGF-BB) are associated with excessive cell migration, proliferation and many growth-related diseases. However, whether these agents utilise similar mechanisms to trigger vascular pathologies remains to be explored. The effects of Ang II and PDGF-BB on coronary artery smooth muscle cell (CASMC) migration and proliferation were investigated via Dunn chemotaxis assay and the measurement of [3H]thymidine incorporation rates, respectively. Both atherogens produced similar degrees of cell migration which were dramatically inhibited by mevastatin (10 nM). However, the inhibitory effects of losartan (10 nM) and MnTBAP (a free radical scavenger; 50 μM) were found to be unique to Ang II-mediated chemotaxis. In contrast, MnTBAP, apocynin (an antioxidant and phagocytic NADPH oxidase inhibitor; 500 μM), mevastatin and pravastatin (100 nM) equally suppressed both Ang II and PDGF-BB-induced cellular growth. Although atherogens produced similar changes in NADPH oxidase, NOS and superoxide dismutase activities, they differentially regulated antioxidant glutathione peroxidase activity which was diminished by Ang II and unaffected by PDGF-BB. Studies with signal transduction pathway inhibitors revealed the involvement of multiple pathways i.e. protein kinase C, tyrosine kinase and MAPK in Ang II- and/or PDGF-BB-induced aforementioned enzyme activity changes. In conclusion, Ang II and PDGF-BB may induce coronary atherosclerotic disease formation by stimulating CASMC migration and proliferation through agent-specific regulation of oxidative status and utilisation of different signal transduction pathways.
Resumo:
We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.
Resumo:
OBJECTIVE: The fibroblast growth factor (FGF) family of signaling molecules has been associated with chemoresistance and poor prognosis in a number of cancer types, including lung, breast, ovarian, prostate, and head and neck carcinomas. Given the identification of activating mutations in the FGF receptor 2 (FGFR2) receptor tyrosine kinase in a subset of endometrial tumors, agents with activity against FGFRs are currently being tested in clinical trials for recurrent and progressive endometrial cancer. Here, we evaluated the effect of FGFR inhibition on the in vitro efficacy of chemotherapy in endometrial cancer cell lines. METHODS: Human endometrial cancer cell lines with wild-type or activating FGFR2 mutations were used to determine any synergism with concurrent use of the pan-FGFR inhibitor, PD173074, and the chemotherapeutics, doxorubicin and paclitaxel, on cell proliferation and apoptosis. RESULTS: FGFR2 mutation status did not alter sensitivity to either chemotherapeutic agent alone. The combination of PD173074 with paclitaxel or doxorubicin showed synergistic activity in the 3 FGFR2 mutant cell lines evaluated. In addition, although nonmutant cell lines were resistant to FGFR inhibition alone, the addition of PD173074 potentiated the cytostatic effect of paclitaxel and doxorubicin in a subset of FGFR2 wild-type endometrial cancer cell lines. CONCLUSIONS: Together these data suggest a potential therapeutic benefit to combining an FGFR inhibitor with standard chemotherapeutic agents in endometrial cancer therapy particularly in patients with FGFR2 mutation positive tumors.
Resumo:
Overexpression of the receptor tyrosine kinase EphB4 is common in epithelial cancers and linked to tumor progression by promoting angiogenesis, increasing survival and facilitating invasion and migration. However, other studies have reported loss of EphB4 suggesting a tumor suppressor function in some cancers. These opposing roles may be regulated by (i) the presence of the primary ligand ephrin-B2 that regulates pathways involved in tumor suppression or (ii) the absence of ephrin-B2 that allows EphB4 signaling via ligand-independent pathways that contribute to tumor promotion. To explore this theory, EphB4 was overexpressed in the prostate cancer cell line 22Rv1 and the mammary epithelial cell line MCF-10A. Overexpressed EphB4 localized to lipid-rich regions of the plasma membrane and confirmed to be ligand-responsive as demonstrated by increased phosphorylation of ERK1/2 and internalization. EphB4 overexpressing cells demonstrated enhanced anchorage-independent growth, migration and invasion, all characteristics associated with an aggressive phenotype, and therefore supporting the hypothesis that overexpressed EphB4 facilitates tumor promotion. Importantly, these effects were reversed in the presence of ephrin-B2 which led to a reduction in EphB4 protein levels, demonstrating that ligand-dependent signaling is tumor suppressive. Furthermore, extended ligand stimulation caused a significant decrease in proliferation that correlated with a rise in caspase-3/7 and -8 activities. Together, these results demonstrate that overexpression of EphB4 confers a transformed phenotype in the case of MCF-10A cells and an increased metastatic phenotype in the case of 22Rv1 cancer cells and that both phenotypes can be restrained by stimulation with ephrin-B2, in part by reducing EphB4 levels.
Resumo:
Our understanding of the mechanisms of action of GH and its receptor, the GHR, has advanced significantly in the last decade and has provided some important surprises. It is now clear that the GH-GHR axis activates a number of inter-related signalling pathways, not all of which are dependent on the intracellular tyrosine kinase, JAK2 as originally postulated. JAK2-independent pathways, mediated via the Src family kinases, together with a number of negative regulators of GH signalling and emerging cross-talk mechanisms with other growth factor receptors, provide a complex array of mechanisms that are capable of fine-tuning responses to GH in a cell context dependent manner. Additionally, it is also now clear that GH and the GHR can translocate to the nucleus of target cells and initiate, as yet not well defined, nuclear responses. Continued emphasis on elucidation of these complex mechanisms is critical to provide further insights into the diverse physiological and pathophysiological effects of GH.
Resumo:
Research into hyperinsulinemic laminitis has progressed significantly in recent years with the use of the prolonged-euglycemic, hyperinsulinemic clamp (p-EHC). Previous investigations of laminitis pathophysiology have focused on digital vascular dysfunction, inflammation, altered glucose metabolism within the lamellae, and lamellar basement membrane breakdown by metalloproteinases. The etiopathogenesis of laminitis occurring in association with hyperinsulinemia is yet to be fully characterized, but it may not involve these mechanisms. Insulin stimulates cellular proliferation and can also affect other body systems, such as the insulin-like growth factor (IGF) system. Insulin-like growth factor-1 (IGF-1) is structurally homologous to insulin and, like insulin, binds with strong affinity to a specific tyrosine kinase receptor on the cell surface to produce its effects, which include promoting cell proliferation. Receptors for IGF-1 (IGF-1R) are present in the lamellar epidermis. An alternative theory for the pathogenesis of hyperinsulinemic laminitis is that uncontrolled cell proliferation, mediated through both the insulin receptor (InsR) and IGF-1R, leads to lengthening, weakening, and failure of the lamellae. An analysis of the proliferative activity of lamellar epidermal cells during the developmental and acute phases of hyperinsulinemic laminitis, and lamellar gene expression of the InsR and IGF-1R was undertaken.
Resumo:
HER2 is an erbB/HER type I tyrosine kinase receptor that is frequently over-expressed in malignant epithelial tumours. Herceptin, a humanised mouse monoclonal antibody to HER2, is proven therapeutically in the management of metastatic breast cancer, significantly prolonging survival when combined with cytotoxic chemotherapeutic agents. Immunohistochemical studies suggest that non-small-cell lung cancer (NSCLC) tumours may over-express HER2. Our aim was to evaluate HER2 gene amplification and semi-quantitative immuno-expression in NSCLC. A total of 344 NSCLC cases were immunostained for HER2 expression in 2 centres using the HercepTest. Fluorescence in situ hybridisation (FISH) analysis for HER2 gene amplification was performed on most positive cases and a subset of negative cases. Fifteen cases (4.3%) demonstrated 2+ or 3+ membranous HER2 immuno-expression. There was no correlation between immuno-expression and tumour histology or grade. Tumours from higher-stage disease were more often HercepTest-positive (p < 0.001). All 4 HercepTest 3 + cases demonstrated gene amplification. One of the 5 2+ cases tested for gene amplification showed areas of borderline amplification and areas of polyploidy. None of the 19 HercepTest-negative cases demonstrated gene amplification or polyploidy (p < 0.001). Gene amplification was demonstrated in all HercepTest 3+ scoring NSCLC cases. Unlike breast cancer, gene amplification and HER2 protein over-expression assessed by the HercepTest appeared to be uncommon in NSCLC. Herceptin may therefore target only a small proportion of NSCLC tumours and be of limited clinical value in this disease, particularly in the adjuvant setting. © 2001 Wiley-Liss, Inc.
Resumo:
It has been reported that genes regulating apoptosis may play a role in tumoral angiogenesis. This study examined the relationship between tumour vascularization, a measure of tumour angiogenesis, and bcl-2 and p53 expression in operable non-small-cell lung cancer (NSCLC). The relationship between bcl-2, p53 and tumour vascularization and epidermal-growth-factor- receptor(EGFR) and c-erbB-2 expression was also studied. Tissue sections from resected tumour specimens of 107 NSCLC patients were evaluated immunohistochemically for vascular grade and bcl-2, p53, EGFR and c-erbB-2 expression. bcl-2 expression was found in 20/107 (19%) cases and was associated with squamous-cell histology (p = 0.03). A strong inverse relationship was found between bcl-2 expression and vascular grade (p = 0.005). All c-erbB-2-positive cases were negative for bcl-2 expression (p = 0.01). Overall no association was found between c-erbB-2 expression and vascular grade. However, in bcl-2-negative cases positive c-erbB-2 expression correlated with low angiogenesis (p = 0.05). No relationship was found between p53 and EGFR expression and bcl-2, c-erbB-2 or vascular grade. The improved prognosis reported in bcl-2-positive NSCLC may be related to low tumour vascularization. The results suggest that the anti-apoptotic gene bcl- 2 plays a role in regulating tumour angiogenesis. Since normal lung epithelium expresses bcl-2, a sequence of tumour progression involving loss of bcl-2, then activation of c-erbB-2 or increase in tumour vascularization is proposed.
Resumo:
Purpose: In non-small-cell lung cancer (NSCLC), the epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) play major roles in tumorigenesis. This phase I/II study evaluated combined therapy with the EGFR tyrosine kinase inhibitor (TKI) gefitinib and the COX-2 inhibitor rofecoxib in platinum-pretreated, relapsed, metastatic NSCLC (n = 45). Patients and Methods: Gefitinib 250 mg/d was combined with rofecoxib (dose escalated from 12.5 to 25 to 50 mg/d through three cohorts, each n = 6). Because the rofecoxib maximum-tolerated dose was not reached, the 50 mg/d cohort was expanded for efficacy evaluation (n = 33). Results: Among the 42 assessable patients, there was one complete response (CR) and two partial responses (PRs) and 12 patients with stable disease (SD); disease control rate was 35.7% (95% CI, 21.6% to 52.0%). Median time to tumor progression was 55 days (95% CI, 47 to 70 days), and median survival was 144 days (95% CI, 103 to 190 days). In a pilot study, matrix-assisted laser desorption/ionization (MALDI) proteomics analysis of baseline serum samples could distinguish patients with an objective response from those with SD or progressive disease (PD), and those with disease control (CR, PR, and SD) from those with PD. The regimen was generally well tolerated, with predictable toxicities including skin rash and diarrhea. Conclusion: Gefitinib combined with rofecoxib provided disease control equivalent to that expected with single-agent gefitinib and was generally well tolerated. Baseline serum proteomics may help identify those patients most likely to benefit from EGFR TKIs. © 2007 by American Society of Clinical Oncology.