963 resultados para TRANSVERSE-MOMENTUM DISTRIBUTIONS
Resumo:
We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
Resumo:
The differential production cross section of electrons from semileptonic heavy-flavor hadron decays has been measured at midrapidity (\y\ < 0.5) in proton-proton collisions at root s = 7 TeV with ALICE at the LHC. Electrons were measured in the transverse momentum range 0.5 < p(t) < 8 GeV/c. Predictions from a fixed-order perturbative QCD calculation with next-to-leading-log resummation agree with the data within the theoretical and experimental uncertainties. DOI: 10.1103/PhysRevD.86.112007
Resumo:
Neutral-pion pi(0) spectra were measured at midrapidity (vertical bar y vertical bar < 0.35) in Au + Au collisions at root s(NN) = 39 and 62.4 GeV and compared with earlier measurements at 200 GeV in a transverse-momentum range of 1 < p(T) < 10 GeV/c. The high-p(T) tail is well described by a power law in all cases, and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding spectra for p + p collisions. The nuclear modification factors (RAA) show significant suppression, with a distinct energy, centrality, and p(T) dependence. Above p(T) = 7 GeV/c, R-AA is similar for root sNN = 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R-AA well at 200 GeV fail to describe the 39 GeV data, raising the possibility that, for the same p(T) region, the relative importance of initial-state effects and soft processes increases at lower energies. The p(T) range where pi(0) spectra in central Au + Au collisions have the same power as in p + p collisions is approximate to 5 and 7 GeV/c for root sNN = 200 and 62.4 GeV, respectively. For the root sNN = 39 GeV data, it is not clear whether such a region is reached, and the x(T) dependence of the x(T)-scaling power-law exponent is very different from that observed in the root sNN = 62 and 200 GeV data, providing further evidence that initial-state effects and soft processes mask the in-medium suppression of hardscattered partons to higher p(T) as the collision energy decreases.
Resumo:
We report on the mid-rapidity mass spectrum of di-electrons and cross sections of pseudoscalar and vector mesons via e(+) e(-) decays, from root s = 200 GeV p + p collisions, measured by the large-acceptance experiment STAR at the Relativistic Heavy Ion Collider. The ratio of the di-electron continuum to the combinatorial background is larger than 10% over the entire mass range. Simulations of di-electrons from light-meson decays and heavy-flavor decays (charmonium and open charm correlation) are found to describe the data. The extracted omega -> e(+) e(-) invariant yields are consistent with previous measurements. The mid-rapidity yields (dN/dy) of phi and J/psi are extracted through their di-electron decay channels and are consistent with the previous measurements of phi -> K+ K- and J/psi -> e(+) e(-). Our results suggest a new upper limit of the branching ratio of the eta -> e(+) e(-) of 1.7 x 10(-5) at the 90% confidence level.
Resumo:
Identical neutral kaon pair correlations are measured in root s = 7 TeV pp collisions in the ALICE experiment. One-dimensional (KsKs0)-K-0 correlation functions in terms of the invariant momentum difference of kaon pairs are formed in two multiplicity and two transverse momentum ranges. The femtoscopic parameters for the radius and correlation strength of the kaon source are extracted. The fit includes quantum statistics and final-state interactions of the a(0)/f(0) resonance. (KsKs0)-K-0 correlations show an increase in radius for increasing multiplicity and a slight decrease in radius for increasing transverse mass, mT, as seen in pi pi correlations in pp collisions and in heavy-ion collisions. Transverse mass scaling is observed between the (KsKs0)-K-0 and pi pi radii. Also, the first observation is made of the decay of the f(2)'(1525) meson into the (KsKs0)-K-0 channel in pp collisions. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
We report the measurement of direct photons at midrapidity in Au + Au collisions at root s(NN) = 200 GeV. The direct photon signal was extracted for the transverse momentum range of 4 GeV/c < pT < 22 GeV/c, using a statistical method to subtract decay photons from the inclusive photon sample. The direct photon nuclear modification factor R-AA was calculated as a function of p(T) for different Au + Au collision centralities using the measured p + p direct photon spectrum and compared to theoretical predictions. R-AA was found to be consistent with unity for all centralities over the entire measured pT range. Theoretical models that account for modifications of initial direct photon production due to modified parton distribution functions in Au and the different isospin composition of the nuclei predict a modest change of R-AA from unity. They are consistent with the data. Models with compensating effects of the quark-gluon plasma on high-energy photons, such as suppression of jet-fragmentation photons and induced-photon bremsstrahlung from partons traversing the medium, are also consistent with this measurement.
Resumo:
We present measurements of the J/psi invariant yields in root s(NN) = 39 and 62.4 GeV Au + Au collisions at forward rapidity (1.2 < vertical bar y vertical bar < 2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au + Au collisions (R-CP) and for various centrality selections in Au + Au relative to scaled p + p cross sections obtained from other measurements (R-AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement. DOI: 10.1103/PhysRevC.86.064901
Resumo:
We report measurements of charmed-hadron (D-0, D*) production cross sections at midrapidity in p + p collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays D-0 -> K- pi(+), D*(+) -> D-0 pi(+) -> K-pi(+)pi(+) and their charge conjugates, covering the p(T) range of 0.6-2.0 and 2.0-6.0 GeV/c for D-0 and D*(+), respectively. From this analysis, the charm-pair production cross section at midrapidity is d sigma/dy vertical bar(c (c) over bar)(y-0) = 170+/-45(stat)(-59)(+38()sys) mu b. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a fixed-order next-to-leading logarithm calculation.
Resumo:
The effect of event background fluctuations on charged particle jet reconstruction in Pb-Pb collisions at root s(NN) = 2.76 TeV has been measured with the ALICE experiment. The main sources of non-statistical fluctuations are characterized based purely on experimental data with an unbiased method, as well as by using single high p(t) particles and simulated jets embedded into real Pb-Pb events and reconstructed with the anti-k(t) jet finder. The influence of a low transverse momentum cut-off on particles used in the jet reconstruction is quantified by varying the minimum track p(t) between 0.15 GeV/c and 2 GeV/c. For embedded jets reconstructed from charged particles with p(t) > 0.15 GeV/c, the uncertainty in the reconstructed jet transverse momentum due to the heavy-ion background is measured to be 11.3 GeV/c (standard deviation) for the 10% most central Pb-Pb collisions, slightly larger than the value of 11.0 GeV/c measured using the unbiased method. For a higher particle transverse momentum threshold of 2 GeV/c, which will generate a stronger bias towards hard fragmentation in the jet finding process, the standard deviation of the fluctuations in the reconstructed jet transverse momentum is reduced to 4.8-5.0 GeV/c for the 10% most central events. A non-Gaussian tail of the momentum uncertainty is observed and its impact on the reconstructed jet spectrum is evaluated for varying particle momentum thresholds, by folding the measured fluctuations with steeply falling spectra.
Resumo:
The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at root s(NN) = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p(T) > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p(T) > 4 GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the p(T) < 4 GeV/c region dominated by thermal photons, we find a substantial direct-photon v(2) comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v(2).
Resumo:
A systematic study is presented for centrality, transverse momentum (p(T)), and pseudorapidity (eta) dependence of the inclusive charged hadron elliptic flow (v(2)) at midrapidity (vertical bar eta vertical bar < 1.0) in Au + Au collisions at root s(NN) = 7.7, 11.5, 19.6, 27, and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and four-particle cumulants (v(2){4}), are presented to investigate nonflow correlations and v(2) fluctuations. We observe that the difference between v(2){2} and v(2){4} is smaller at the lower collision energies. Values of v(2), scaled by the initial coordinate space eccentricity, v(2)/epsilon, as a function of p(T) are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (root s(NN) = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at root s(NN) = 2.76 TeV). The v(2)(pT) values for fixed pT rise with increasing collision energy within the pT range studied (<2 GeV/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v(2)(pT). We also compare the v(2) results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at beam energy scan energies are discussed.
Resumo:
The differential cross section for the production of direct photons in p + p collisions at root s = 200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive direct photons were measured in the transverse momentum range from 5: 5-25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x(T), the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.
Resumo:
The production of K*(892)(0) and phi(1020) in pp collisions at root s = 7 TeV was measured by the ALICE experiment at the LHC. The yields and the transverse momentum spectra d(2)N/dydp(T) at midrapidity vertical bar y vertical bar < 0.5 in the range 0 < p(T) < 6 GeV/c for K*(892)(0) and 0.4 < p(T) < 6 GeV/c for phi(1020) are reported and compared to model predictions. Using the yield of pions, kaons, and Omega baryons measured previously by ALICE at root s = 7 TeV, the ratios K*/K-, phi/K*, phi/ K-, phi/pi(-), and (Omega + <(Omega)over bar>)/phi are presented. The values of the K*/K-, phi/K* and phi/K- ratios are similar to those found at lower centre-of-mass energies. In contrast, the phi/pi(-) ratio, which has been observed to increase with energy, seems to saturate above 200 GeV. The (Omega + (Omega) over bar)/phi ratio in the p(T) range 1-5 GeV/ c is found to be in good agreement with the prediction of the HIJING/B (B) over bar v2.0model with a strong colour field.
Resumo:
The ALICE experiment has measured the inclusive J/psi production in Pb-Pb collisions at root s(NN) = 2.76 TeV down to zero transverse momentum in the rapidity range 2.5 < y < 4. A suppression of the inclusive J/psi yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over the 0%-80% most central collisions, is 0.545 +/- 0.032(stat) +/- 0.083dsyst_ and does not exhibit a significant dependence on the collision centrality. These features appear significantly different from measurements at lower collision energies. Models including J/psi production from charm quarks in a deconfined partonic phase can describe our data.
Resumo:
The P-T-differential inclusive production cross section of the prompt charm-strange meson D-s(+) in the rapidity range vertical bar y vertical bar < 0.5 was measured in proton-proton collisions at root s = 7 TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of 2.98 x 10(8) events collected with a minimum-bias trigger. The corresponding integrated luminosity is L-int = 4.8 nb(-1). Reconstructing the decay D-s(+) -> phi pi(+) with phi -> K-K+, and its charge conjugate, about 480 D-s(+/-) mesons were counted, after selection cuts, in the transverse momentum range 2 < P-T < 12 GeV/c. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely D-0, D+, D*+ and D-s(+)) were determined both as a function of p(T) and integrated over p(T)after extrapolating to full p(T) range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in e(+)e(-), ep and pp interactions at various centre-of-mass energies. (C) 2012 CERN. Published by Elsevier By. All rights reserved.