803 resultados para TIN ALLOYS
Resumo:
This work describes the development of an analytical procedure for on-line tin determination using thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Two tubes were evaluated as atomization cells: a metallic tube (Ni-Cr, principal components composition: 73.95% Ni and 16.05% Cr) and a ceramic tube (99.8% Al2O3). The use of air as the carrier was made by employing a Rheodyne valve to inject the samples, allowing an analytical frequency of 90 h(-1) and avoiding sample dispersion. The carrier flow rate (air), sample volume injected, and acid concentration (HCl) were evaluated for the optimization of the TS-FF-AAS system. The sensitivity for 50 mL of analytical solution with TS-FF-AAS was 2 and 5 times higher (to metallic and ceramic tube, respectively) than using an acetylene-nitrous oxide flame with pneumatic aspiration (requiring a sample volume of approximately 20 times higher.
Resumo:
The effect of the addition of Cr and Nb on the microstructure and the electrochemical corrosion of the weldable, high-strength and stress corrosion cracking (SCC) resistant Al-5%Zn-1.67%Mg-0.23%Cu alloy (H) has been studied. Combined additions of the alloying elements, J (with Nb), L (with Cr) and O (with Cr and Nb) and different heat treatments, ST (cold-rolled), A (annealed), F (quenched), B (quenched and aged) and C (quenched in two steps and aged), to obtain different microstructures and hardness have been performed. To correlate the electrochemical corrosion with the microstructure of the specimens, corrosion potential (E(cor)) measurements in different chloride solutions were performed and optical microscopy, SEM, TEM and EDX were applied. In chloride solutions containing dissolved O-2 or H2O2, the present alloys were polarized up to the pitting attack. It was shown that the E(cor) measurements were very sensitive to the alloy composition and heat treatment, increasing in the order H < J < L < O < Al (for a given heat treatment) and F < A approximate to ST < B < C (for a given alloy). The MgZn2 precipitates of the annealed (A) and cold-rolled (ST) specimens were dissolved in chloride solutions containing oxidizing agents and pitting attack was shown to develop in the cavities where the precipitates were present. In the specimens B and C, the compositions of the precipitate free zones was found to be equal to that of the matrix solid solution and preferential intergranular attack was not evident, this being in agreement with their SCC resistance. The addition of Cr and Nb increased the pitting corrosion resistance. The effects of Cr and Nb were additive, that of Cr being predominant, either, in the E(cor) shift or in the increase in the pitting corrosion resistance.
Resumo:
Statement of problem. The success of metal-ceramic restorations is influenced by the compatibility between base metal alloys and porcelains. Although porcelain manufacturers recommend their own metal systems as the most compatible for fabricating metal-ceramic prostheses, a number of alloys have been used.Purpose. This study evaluated the shear bond strength between a porcelain system and 4 alternative alloys.Material and methods. Two Ni-Cr alloys: 4 ALL and Wiron 99, and 2 Co-Cr alloys: IPS d.SIGN 20 and Argeloy NP were selected for this study. The porcelain (IPS d.Sign porcelain system) portion of the cylindrical inetal-ceramic specimens was 4 mm thick and 4 mm high; the metal portion was machined to 4 x 4 mm, with a base that was 5 nun thick and 1 mm high. Forty-four specimens were prepared (n=11). Ten specimens from each group were subjected to a shear load oil a universal testing machine using a 1 min/min crosshead speed. One specimen from each group was observed with a scanning electron microscope. Stress at failure (MPa) was determined. The data were analyzed with a 1-way analysis of variance (alpha=.05).Results. The groups, all including IPS d.Sign porcelain, presented the following mean bond strengths (+/-SD) in MPa: 4 ALL, 54.0 +/- 20.0; Wiron, 63.0 +/- 13.5; IPS d.SIGN 20, 71.7 +/- 19.2; Argeloy NP, 55.2 +/- 13.5. No significant differences were found among the shear bond strength values for the metal-ceramic specimens tested.Conclusion. None of the base metal alloys studied demonstrated superior bond strength to the porcelain tested.
Resumo:
The physicochemical electronic characteristics of SnO2 render it useful in many technical applications, including ceramic varistors, stable electrodes used in electric glass-melting furnaces and electrometallurgy of aluminum, transparent windows and chemical sensors. The use of ZnO as a sintering aid was explored in this study to obtain SnO2 as a dense ceramic. Compacts were obtained by mechanical mixing of oxides, isostatic pressing at 210 MPa and sintering in situ inside a dilatometer at heating rates of 10degreesC/min. The grain size and microstructure were investigated by scanning and transmission electron microscopy (SEM/TEM). The phases and chemical composition were analyzed by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that ZnO acts as a densification aid for SnO2, improving its grain growth with additions of up to 2 mol%. ZnO forms a solid solution with SnO2 UP to 1 mol%, above which SnZnO3 precipitates in the grain boundary, potentially inhibiting shrinkage and grain growth. (C) 2004 Kluwer Academic Publishers
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work describes the chemical modification by Tiron(R) molecules of the surface of SnO2 nanoparticles used to prepare nanoporous membranes. Samples prepared with Tiron(R) content between 1 and 20 wt% and fired at 400 C were characterised by X-Ray Powder Diffraction (XRPD), Extended X-ray Absorption Fine Structure (EXAFS), N-2 adsorption isotherms analysis and permeation experiments. XRPD and EXAFS results show a continuous reduction of crystallite size by increasing the Tiron(R) contents until 7.5 wt%. The control exercised by Tiron(R) modifying agent in crystallite growth allows the fine tuning of the average pore size that can be screened from 0.4 to 4 nm as the amount of grafted molecules decreases from 10 to 0 wt%. In consequence, the membrane cut-off can be screened from 1500 to 3500 g.mol(-1).
Resumo:
Tin dioxide nanoparticle suspensions were synthesized at room temperature by the hydrolysis reaction of tin chloride (II) dissolved in ethanol. The effect of the initial tin (II) ion concentration, in the ethanolic solution, on the mean particle size of the nanoparticles was studied. The Sn2+ concentration was varied from 0.0025 to 0.1 M, and all other synthesis parameters were kept fixed. Moreover, an investigation of the effect of agglomeration on the nanoparticle characteristics (i.e., size and morphology) was also done by modifying the pH of the SnO2 suspensions. The different samples were characterized by transmission electron microscopy, optical absorption spectroscopy in the ultraviolet range, and photoluminescence measurements. The results show that higher initial ion concentrations and agglomeration lead to larger nanoparticles. The concentration effect is explained by enhanced growth due to a higher supersaturation of the liquid medium. However, it was observed that the agglomeration of the nanoparticles in suspension induce coarsening by the oriented-attachment mechanism.
Resumo:
In this work, indium tin oxide (ITO) films were prepared using a wet chemical route, the Pechini method. This consists of a polyesterification reaction between an alpha-hydroxicarboxylate complex (indium citrate and tin citrate) with a polyalcohol (ethylene glycol) followed by a post annealing at 500 degrees C. A 10 at.% of doping of Sn4+ ions into an In2O3 matrix was successfully achieved through this method. In order to characterize the structure, the morphology as well as the optical and electrical properties of the produced ITO films, they were analyzed using different experimental techniques. The obtained films are highly transparent, exhibiting transmittance of about 85% at 550 nm. They are crystalline with a preferred orientation of [222]. Microscopy discloses that the films are composed of grains of 30 nm average size and 0.63 nm RMS roughness. The films' measured resistivity, mobility and charge carrier concentration were 5.8 x 10(-3) Omega cm, 2.9 cm(2)/V s and -3.5 x 10(20)/cm(3), respectively. While the low mobility value can be related to the small grain size, the charge carrier concentration value can be explained in terms of the high oxygen concentration level resulting from the thermal treatment process performed in air. The experimental conditions are being refined to improve the electrical characteristics of the films while good optical, chemical, structural and morphological qualities already achieved are maintained. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The surface properties of SnO2 nanoparticles were modified by grafting ionic (Tiron (R). (OH)(2)C6H2(SO3Na)(2)(H2O)-H-.) or non-ionic (Catechol (R). C6H4-1,2-(OH)(2)) capping Molecules during aqueous sol-gel processing to improve the redispersibility of powdered xerogel. The effect of the amount of grafted organic molecules on the redispersibility of powders in aqueous solution at several basic pH values was Studied. The nanostructural features of the colloidal suspensions were analyzed by small angle X-ray scattering (SAXS) measurements. Irrespective of the nature and amount of grafted molecules, complete redispersion was obtained in aqueous solution at pH = 13. The redispersion at pH = 11 results in a mixture of dispersed primary particles and aggregates. The proportion of well dispersed nanoparticles and aggregates (and their average size) can be tuned by the quantity of grafted ionic molecules.
Resumo:
Potentiostatic and potentiodynamic studies were carried out to establish the inhibiting effects of citric acid on the pitting corrosion of tin. The critical potential (E-crit), which leads to pitting or general corrosion, was determined in sodium perchlorate solution in the pH range 1.0 to 4.0. Pit nucleation and growth, at pH 4.0, can be described by instantaneous nucleation followed by progressive nucleation. The results show that the minimum acid concentration needed to inhibit pitting of tin is 10(-2) M. Pitting occurrence by direct interaction between metal and perchlorate anions was observed.
Resumo:
The effect of Cu2+ contents and of firing temperature on sintering and crystallite growth of nanocrystalline SnO2 xerogels was analyzed by thermoanalysis (mass loss (TG), linear shrinkage, and differential thermal analysis (DTA)), X-ray powder diffraction (XRPD), and EXAFS (extended X-ray absorption fine structures) measurements. Samples were prepared by two methods: (a) coprecipitation of a colloidal suspension from aqueous solution containing both Sn(IV) and Cu(II) ions and (b) grafting copper(II) species on the surface of tin pride gel. The thermoanalysis has shown that the shrinkage associated with the mass loss decreases by increasing the amount of copper. The EXAFS measurements carried out at the Cu K edge have evidenced the presence of copper in substitutional solid solution for the dried xerogel prepared with 0.7 mol % of copper, while for higher concentration of doping, copper has been observed also at the external surface of crystallites. The solid solution is metastable and copper migrates toward the surface during firing. The XRPD and DTA results have shown a recrystallization process near 320 degrees C, which leads to crystallite growth. The presence of copper segregated near the crystallite surface controls its growth.
Resumo:
The effect of consecutive cyclic polarization in de-aerated 0.5 M NaOH solutions on the surface microstructure of mechanically polished Cu-Al-Ag alloys of different compositions and heat treatments has been studied using optical microscopy, SEM and EDS. The current peaks of the cyclic polarization curves do not depend on the alloy composition in the composition range studied. The repetitive potential scans between H2 and O2 evolution in alkaline media lead to preferential dissolution of aluminium, the roughness and phase composition of the surface of the alloys changing significantly. The quasistationary I-E curves of the different Cu-Al-Ag alloys studied consist in the superposition of the quasistationary I-E curves of high-purity Cu and Ag, the EDS microanalysis showing that aluminium is not present on the surface of the alloy in these conditions.
Resumo:
The effect of acetylacetone (acac) complexing ligand on the formation and growth of tin oxide-based nanoparticles during thermohydrolysis at 70 degreesC of a tin precursor SnCl4-n(acac)(n) (0 less than or equal to n less than or equal to 2) solution was analyzed by in situ small-angle X-ray scattering. A. transparent and stable sol was obtained after 2 h of thermohydrolysis at 70 degreesC, allowing the quantitative determination of the particle volume distribution function and its variation with the reaction time. The number of colloidal particles for equivalent thermohydrolysis temperature and time decreases as the [acac]/[Sn] ratio in initial solution increases from 0.5 to 6. Instead, the amount of soluble species remaining in solution increases for increasing [acac]/[Sn] ratio within the same range. This indicates that increasing amounts of Sn-acetylacetone complexes partially prevent the hydrolysis and consequent formation of colloidal particles. The N-2 adsorption isotherm characterization of freeze-dried powders demonstrates that the average pore size is approximately equal to the average size (approximate to9 Angstrom) of the colloidal primary particles in the sol, and that the porosity and surface area (approximate to200 m(2) g(-1)) are independent of the acac content in the initial solution.